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Abstract

INTRODUCTION:Weassessedwhethermacro- and/ormicro-structural whitematter

properties are associated with cognitive resilience to Alzheimer’s disease pathology

years prior to clinical onset.

METHODS: We examined whether global efficiency, an indicator of communication

efficiency in brain networks, and diffusion measurements within the limbic network

and default mode network moderate the association between amyloid-β/tau pathol-

ogy and cognitive decline. We also investigated whether demographic and health/risk

factors are associated with white matter properties.

RESULTS: Higher global efficiency of the limbic network, as well as free-water cor-

rected diffusion measures within the tracts of both networks, attenuated the impact

of tau pathology on memory decline. Education, age, sex, white matter hyperintensi-

ties, and vascular risk factors were associated with white matter properties of both

networks.

DISCUSSION: White matter can influence cognitive resilience against tau pathol-

ogy, and promoting education and vascular health may enhance optimal white matter

properties.
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Highlights:

∙ Aβ and tauwere associated with longitudinal memory change over∼7.5 years.

∙ Whitematter properties attenuated the impact of tau pathology onmemory change.

∙ Health/risk factors were associated with white matter properties.
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1 BACKGROUND

Alzheimer’s disease (AD) is a progressive disorder characterized by the

accumulation of amyloid-β (Aβ) plaques and tau tangles in the brain,

which starts years before clinical symptom onset.1 The accumulation

of Aβ and tau arises in a selective spatiotemporal manner, propagating

across intrinsic brain networks.2,3 The limbic network comprises the

anterior temporal, portions of the insular and the ventromedial pre-

frontal cortices, and the default mode network (DMN) comprises the

medial prefrontal cortex, posterior cingulate, angular gyri, and medial

and lateral temporal lobes.4 These networks are vulnerable to Aβ and
tau pathology3,5 and are involved in cognitive processes like memory,

attention, and emotion processing.4,6 While higher levels of Aβ and

tau pathology are typically associated with cognitive decline, there are

interindividual variabilities in the cognitive vulnerability to AD pathol-

ogy, such that some older adults maintain normal cognition despite

the presence of significant pathology.7,8 This phenomenon is known as

“cognitive resilience”. There is substantial interest in identifying factors

that enhance cognitive resiliencegiven thatdelaying theonsetof symp-

toms by just 1 year would reduce the prevalence of AD dementia by

more than 10%.9,10

Various lifestyle and health factors, such as higher education,

increased physical activity, and lower vascular risk factors, have been

consistently linked to cognitive resilience in AD.11,12 Those modifiable

risk factors have been suggested to enhance tolerance to AD pathol-

ogy through functional and structural copingmechanisms.13 Advanced

imaging techniques, including positron emission tomography (PET)

and magnetic resonance imaging (MRI), now allow us to test these

hypotheses in vivo.13 Functional MRI studies have shown that among

individuals with AD, higher levels of functional connectivity in the left

frontal cortex can attenuate the effect of tau pathology on cognition.14

Increased functional network segregation was also found to predict

lower impact of tau pathology on cognitive performance.10 In parallel,

a recent study showed that higher levels of white matter connectiv-

ity moderated the negative association between brain atrophy, white

matter hyperintensities (WMHs), and cognitive function.15

Our goal was to examine the possible moderation and mediation

effect of macro-structural and/or micro-structural white matter prop-

erties on the association between AD pathology (Aβ and tau assessed

with PET) and longitudinal memory changes in cognitively unimpaired

older adults at risk of AD dementia. We focus on two main AD-related

networks: the limbic network and the DMN. From a macro-structural

perspective, we tested whether global efficiency of the limbic net-

work and the DMN contributes to cognitive resilience to AD pathol-

ogy. Global efficiency is a measure of information transfer efficiency

between brain regions.16 It has been repeatedly associated with cog-

nitive performance in older participants17–19 and could play a key role

in cognitive resilience.20 As for the association with micro-structural

white matter properties, we tested if free-water (FW) corrected frac-

tional anisotropy (FAT, where T stands for tissue), FW-corrected mean

diffusivity (MDT), FW-corrected radial diffusivity (RDT), FW-corrected

axial diffusivity (ADT), and FW indexwithin the tracts of both networks

contributed to cognitive resilience. When compared to the traditional

diffusion tensor image (DTI) measures, FW-corrected DTI measures

provide more robust representation of white matter properties by

minimizing the influence of extracellular water.21 In this context, FAT

assesses the directional consistency of water diffusion, indicative of

tissue micro-structural integrity, while MDT reflects the overall dif-

fusional movement, sensitive to cellular and membrane changes.21,22

RDT captures diffusion across fibers, which is linked to myelin sheath

status and axonal alterations. ADT measures diffusion along nerve

fibers, and it is associated with axonal health.21,22 These micro-

structural whitematter properties are essential for signal transmission

and network integration and their integrity has been associated with

cognitive performances.23,24 Last, we assessed which health/lifestyle

factors influencemacro- andmicro-structural whitematter properties,

to inform about potential pathways bywhich cognitive resilience could

be improved.

2 METHODS

2.1 Participants

We included 194 participants at risk of sporadic AD from the Pre-

symptomatic Evaluation of Experimental or Novel Treatments for AD

(PREVENT-AD) study25,26 who (1) had both Aβ- and tau-PET, (2) had

structural and diffusion MRI imaging, (3) were cognitively unimpaired

at the time of the PET andMRI imaging scans, and (4) had aminimumof

two cognitive assessments. The inclusion and exclusion criteria can be

found in Figure S1. After imaging processing and quality control (QC),

we excluded three participants due to inadequate PET-MRI image

co-registration. Furthermore, one participant was removed for poor

registration between T1-weighted (T1w) MRI and diffusion-weighted
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QIU ET AL. 3

MRI (dMRI), and another was excluded for motion artifacts during

dMRI scanning (QC details provided in the Tables S1–S2 and Figures

S2–S3). As a result, the final sample included 189 participants.

PREVENT-AD is a monocentric longitudinal study that enrolled

387 cognitively unimpaired older adults with a familial history of AD

dementia.25,26 The enrollment criteria included: (1) having a parent

or multiple siblings (two or more) diagnosed with AD-like dementia;

(2) having intact cognition at enrollment; (3) being age 60 years or

older, or between 55 and 59 if <15 years from their affected fam-

ily member’s age at symptom onset; (4) having no major neurological

or psychiatric diseases.25,26 All participants exhibited unimpaired cog-

nitive and functional scores on the Montreal Cognitive Assessment

(MoCA) and the Clinical Dementia Rating (CDR) at enrollment and

exhibited unimpaired neuropsychological function on the Repeatable

Battery for the Assessment of Neuropsychological Status (RBANS) at

their baseline visit. Fifteen individuals with ambiguous MoCA, CDR,

or RBANS scores at enrollment or baseline visits were considered

unimpaired after more extensive neuropsychological testing and were

included in the PREVENT-AD cohort.

All participants gave written informed consent in accordance with

medical ethics approval of the research project before enrollment.

2.2 Neuropsychological testing

Participants underwent annual cognitive evaluation with the RBANS,

which comprises 12 subtests that encompass five cognitive domains

(mean cognitive follow-up time of 7.43 years± 1.82, range 1.99–10.24

years). Given thatmemory is usually the first cognitive domain affected

in AD,27 analyses have been restricted to Immediate Memory (list

learning and story memory subtests) and Delayed Memory (list recall,

list recognition, story memory, and figure recall subtests) composite

scores.

2.3 Image acquisition

For all participants, MRI data were acquired on a 3 T Siemens Prisma

scanner. T1wMRI scans were acquired using a three-dimensional (3D)

magnetization prepared rapid gradient echo (MPRAGE) sequencewith

repetition time (TR) = 2300 ms, echo time (TE) = 2.96 ms, inversion

time = 900 ms, flip angle = 9◦, matrix size = 256 × 256 × 192, voxel

size = 1 × 1 × 1 mm, generalized auto-calibrating partially parallel

acquisition (GRAPPA) acceleration factor = 2, and duration of 5 min

30 s. T2-weighted (T2w) MRI scans were performed using a 3D T2w

SPACE sequence with TR= 2500ms, TE= 198ms, turbo factor= 143,

matrix size = 320 × 320 × 320, voxel size = 0.64 × 0.64 × 0.64 mm,

GRAPPA acceleration factor = 4, and duration of 7 min 35 s. The

dMRI scans were acquired using a pulse gradient spin echo (PGSE) EPI

sequence with TR = 3000 ms, TE = 66 ms, flip angle = 90◦, matrix

size = 110 × 110 × 81, voxel size = 2 × 2 × 2 mm, b = [0, 300, 1000,

2000] s/mm2 with [9, 7, 29, 64] directions, GRAPPA acceleration fac-

tor = 2, multiband/SMS factor = 3, and duration of 5 min 49 s. To

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature on

Alzheimer’s disease, cognitive resilience, risk factors, and

brain mechanism using PubMed. Numerous studies have

shown that various factors such as education, midlife

activities, lifestyle, genetics, andmedical history are asso-

ciated with lower cognitive impairment and dementia

risk. However, the underlying brain mechanism behind

this protective effect remains unknown.

2. Interpretation: We showed that macro- and micro-

structural whitematter properties of structural networks

moderate the association between tau pathology and lon-

gitudinal memory change in preclinical AD. Education,

age, sex, white matter hyperintensities, and a history

of hypertension were associated with unfavorable white

matter properties. These findings suggest that macro-

and micro-structural white matter properties influence

cognitive resilience to tau pathology.

3. Future directions: Future work is necessary to identify

the impact of health/risk factors on longitudinal white

matter changes and how these changes affect longitudi-

nal cognition.

correct for EPI-induced distortions, a b= 0 imagewith reversed phase-

encoding was acquired immediately after the dMRI acquisition. T1w

and dMRI scans were the closest available to the date of PET scan

(average time between PET andMRI: 1.41± 0.99 years).

PET scans were performed on a brain-dedicated Siemens/CTI high-

resolution research tomograph using [18F]NAV4694 for measuring Aβ
burden and flortaucipir [18F]AV-1451 (FTP) for assessing tau depo-

sition. Aβ-PET scans were obtained 40–70 minutes after injection

(220 ± 22 MBq), while tau scans were acquired 80–100 minutes

post-injection (370 ± 37 MBq). The acquisition process involved cap-

turing 5-minute frames along with an attenuation scan. Subsequently,

after application of standard corrections, the acquired images were

reconstructed using a 3Dordinary Poisson ordered subset expectation

maximum (OP-OSEM) algorithmwith 10 iterations and 16 subsets.

2.4 PET processing

PET images were processed with a standard pipeline from the

Villeneuve lab (see https://github.com/villeneuvelab/vlpp for more

details). Aβ- and tau-PET images were realigned, averaged, and co-

registered to their corresponding T1w MRI scans, which had been

processed and segmented according to the Desikan-Killiany atlas28

with FreeSurfer 5.3 to define regions of interest in each participant’s

native space. The registered PET images were then masked to remove

cerebrospinal fluid (CSF) signal and smoothed using a Gaussian kernel
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4 QIU ET AL.

of 6 mm3. Standardized uptake value ratios (SUVRs) were calcu-

lated using the cerebellum cortex as the reference region for Aβ-PET
images29 and the inferior cerebellar graymatter for tau-PET images.30

A global Aβ burden was generated by averaging the SUVR values

across the bilateral medial and lateral frontal, parietal, and temporal

regions.31 The assessment of tau pathology was done using a tempo-

ral meta-region of interest (meta-ROI), which involved averaging the

SUVRof the bilateral entorhinal, amygdala, parahippocampal, fusiform,

inferior temporal, andmiddle temporal regions.32

2.5 Diffusion MRI processing

We used TractoFlow Atlas-Based Segmentation (TractoFlow-

ABS) pipeline, an extension of TractoFlow, to process dMRI data

(https://github.com/scilus/tractoflow-ABS).33,34 The functions in

TractoFlow/TractoFlow-ABS are based on several neuroimaging

software packages, namely, the Diffusion Imaging for Python library

(DIPY), MRtrix3, the FMRIB software library (FSL), and ANTs.33

The pipelines used Nextflow and Singularity to ensure efficient and

reproducible processing results for diffusion image analyses.33 Pre-

processing steps include denoising, correction for field inhomogeneity,

geometric distortions, eddy-current effects, along with brain extrac-

tion, normalization, and upsampling to 1 mm.33 Specifically, we used

the b = 0, 300, and 1000 shells to perform tensor fitting to generate

maps for the DTI measures, such as FA, MD, RD, and AD. Along with

the typical DTI modeling, we used the b = 0, 1000, and 2000 shells to

perform Constrained Spherical Deconvolution (CSD)35,36 to compute

fiber orientation distribution function (fODF) maps.37,38 Then the

advanced fODF measures like apparent fiber density (AFD, a measure

in each fixel, that is, fiber population within voxels proportional to the

volume of axons aligned on a specific direction),37,39 were also gener-

ated. Unlike the standard version of TractoFlow, TractoFlow-ABS uses

FreeSurfer output files to create tracking and seeding masks robust to

WMHs. This approach is favorable for aging brains since these WMHs

usually create holes in the white matter mask produced by classical

techniques, such as ANTs and FSL.34,40 It allows for the reconstruction

of a more accurate white matter mask, enabling tractography through

white matter lesions if coherent local orientations are present.34 The

tracking mask was generated by combining the white matter mask

and nuclei masks, and the seeding mask was the white matter and

gray matter interface. Last, we performed local probabilistic tracking

algorithm using the fODF image for directions and seeding 20 seeds

per voxel in the seeding mask, to generate the whole brain tractogram

for each participant.33,41 The tractograms had a mean of 4.32 million

streamlines with a standard deviation of 0.56million streamlines.

2.6 White matter hyperintensities quantification

WMHs measurement was generated using T1w and T2w MRI scans

and a previously validated automated technique42,43 (see Supplemen-

tarymethods for details).

2.7 Network construction

We applied the Connectoflow pipeline (https://github.com/scilus/

connectoflow) to construct a whole brain structural network for each

participant (step1 in Figure 1). The pipeline requires theT1wanddMRI

images, an atlas for parcellation, tractogram, and fODF image as inputs.

The Connectoflow pipeline features a tractogram filtering method:

COMMIT2, which is an advanced iteration of Convex Optimization

Modeling for Microstructure Informed Tractography (COMMIT).44,45

This method aims to remove invalid streamlines and assigns a quan-

titative weight to each streamline, quantifying their actual contri-

butions toward the diffusion signal.45 We used the AFD metric, a

reliable axonal density estimation37 to weigh the COMMIT2-derived

tractograms, providing a region-to-region structural connectivity esti-

mation. This method makes structural connectivity between brain

regions more biologically relevant and provides a more faithful rep-

resentation of the underlying white matter pathway.46 Given our

focus on the limbic network and DMN, we used the Schaefer par-

cellation with 400 parcels across seven networks as our template

to define network nodes.47 The Schaefer atlas was derived from

a sample of 1489 individuals,47 and while it was originally derived

from resting-state fMRI data, it is now widely used across imaging

modalities, facilitating comparison with existing literature on brain

properties.10,48 We used FreeSurfer 5.3 output files and the approach

detailed on the website to project the Schaefer parcellation into indi-

vidual space (https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).

2.8 Macro- and micro-structural measurements

After network construction,weextracted the limbic network andDMN

from the whole brain network (step 2 in Figure 1). Then we calculated

the global efficiency of each network as ourmacro-structuralmeasure-

ments (step 3–4 in Figure 1). Global efficiency measures the efficiency

of transferring distant information in a specific network. It is defined as

the average inverse shortest path length, that is, E =

∑
j∈N;j≠i d

−1
ij

n(n−1)
, where

dij is the length of the shortest path between node i and j,N is the set of

all nodes in the network, and n is the number of nodes.49

At themicro-structural level, we filtered tracts connected to regions

within the limbic network and DMN, and extracted the weighted

average of diffusion measurements within the tracts for both net-

works (step 3–4 in Figure 1) by using scilpy (version 1.1.0) scripts

(https://github.com/scilus/scilpy). Our measures of interest were the

FW-corrected DTI measures, namely FAT, MDT, RDT, ADT, and FW

index generated from freely available Freewater_flow pipeline (https://

github.com/scilus/freewater_flow).21,50-52 In brief, the FW elimination

model was utilized to estimate and remove the contamination of water

from the estimated diffusion tensor of the tissue.21 This was achieved

by fitting a regularizedbi-tensormodelwithin eachvoxel,whichmodels

the isotropic diffusion of the FW fraction and tissue compartment.21

The FW fraction was determined using an isotropic mean diffusivity

of 3.0 × 10−3 mm2/s, a parallel diffusivity of 1.5 × 10−3 mm2/s and
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F IGURE 1 Methodology overview. Thewhole-brain network was constructed using whole-brain tractogram and brain parcellation (step 1);
the limbic network and the DMNwere extracted from thewhole-brain networks (step 2), and graph theory analysis was applied to calculate the
global efficiency of the two networks, respectively (step 3–4); tracts that connected regions of the limbic network and the DMNwere extracted
andweighted average diffusionmetrics within the tracts of both networks were calculated (step 3–4); multiple linear regressionmodels were
performed to examine the potential moderation effect of global efficiency/diffusionmetrics of the limbic network and the DMNon
pathological-cognitive associations (step 5). Multivariate PLS analyses were conducted to examine the relationship between the
macro-/micro-structural white matter measurements of the structural networks, and health/lifestyle factors (step 6). ADT, free-water corrected
axial diffusivity; DMN, default mode network; FAT, free-water corrected fractional anisotropy; FW, free-water index;MDT, free-water corrected
mean diffusivity; RDT, free-water corrected radial diffusivity; PLS, partial least square; SVD, singular value decomposition

regularization parameters of λ1 = 0; λ2, λ3 = 0.25.40 As for the tis-

sue compartment, it models the restricted or hindered diffusion of

water molecules near the cell membranes in the brain using a diffusion

tensor.40

2.9 Statistical analyses

We employed linear mixed-effects models to compute the annual

change in both immediate and delayed memory performance for each

participant (See Supplementary methods). We then tested whether

higher levels of Aβ/tau pathology are associatedwith faster immediate

and delayed memory decline, using linear regression models control-

ling for age and sex. We also tested the associations between AD

pathology andwhitemattermeasurements controlling for age and sex.

We next investigated the potential moderating role of white matter

characteristics (used as continuous variables) within the limbic net-

work and DMN on the relationship between Aβ/tau pathology and

memorydeclineby addingwhitematter characteristics (e.g., global effi-

ciency) as interactive terms in our linear regression models (step 5 in

Figure 1). To mitigate the multicollinearity issues, we mean-centered

both the independent variable and the moderator when performing

moderation models. Age, sex, and gray matter volume (divided by

total intracranial volume) of the regions for the network tested were

included as covariates. Given the strong association between edu-

cation and cognitive resilience,53,54 education was not included as a

covariate in themainmodels.Wealso conducted supplementary analy-

ses that incorporated apolipoprotein E (APOE) ε4 status as a covariate
in our models. Given that the inclusion of this covariate did not alter

our main findings, these additional results with the education adjusted

results are presented in the supplementary section for reference (see

Supplementary results). We further conducted mediation (rather than

moderation) analyses usingmediationmodels with 1000 bootstrapped

iterations to analyze the indirect effects of macro-/micro-structural

whitematter properties considering thatADpathology could influence

white matter properties and the latter could then influence cogni-

tion. We consider two-sided p-values ≤0.05 after false discovery rate

(FDR) correction for multiple comparisons as significant. See Tables

S3–S6 for the p-values after FDR correction. As a last step, we per-

formed multivariate partial least square (PLS) analyses to examine the

relationship between the macro-/micro-structural white matter mea-

surements of the structural networks, and demographics (i.e., age, sex,
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6 QIU ET AL.

TABLE 1 Sample demographics and variables of interest

Measures Sample size (N= 189)

Age, years 67.83 (±4.88; 58.59–83.22)

Sex, F (%) 136 (71.96)

APOE ε4 carriers, n (%) 79 (41.80)

Education, years 15.50 (±3.11; 7–24)

spEYO, years −4.42 (±7.49;−21.64–26.49)

MMSE scorea 28.92 (±1.19; 24–30)

TotalWMH load (cm3)b 5.25 (±4.78; 1.14–36.10)

LDL value (mmol/L)c 2.95 (±0.86; 0.64–5.15)

HDL value (mmol/L)c 1.52 (±0.39; 0.78–3.04)

Hypertension, n (%) 46 (24.34)

Diabetes, n (%) 6 (3.17)

Global Aβ SUVR 1.29 (±0.29; 0.99–2.45)

Meta-ROI tau SUVR 1.15 (±0.10; 0.85–1.61)

Note: Data are depicted as the mean (standard deviation; range), except

in the case of categorical variables, where the count and percentage are

presented.

Abbreviations: Aβ, amyloid-β; APOE, apolipoprotein E; F, female; HDL,

high-density lipoprotein; LDL, low-density lipoprotein;MMSE,Mini-Mental

State Examination; spEYO, sporadic parental estimated years to symp-

tom onset (age of the person minus age of the parental onset); SUVR,

standardized uptake value ratio;WMH, whitematter hyperintensity.
aMMSE score was available for 187 participants.
bTotalWMH loadwas available for 185 participants.
cPlasma lipid concentration data (LDL and HDL) were available for 184

participants.

and years of education), genetics (APOE ε4 status), total WMH load,

and vascular factors (i.e., cholesterol levels and medical history of

hypertension/diabetes). Further information on these measurements

is provided in Table 1. Univariate Pearson’s correlations between each

white matter measurement and individual demographic, genetic, total

WMH load and vascular factors are also presented in Supplemen-

tary results. All the analyses except for the PLS were performed using

R software (version 4.2.1). The PLS analyses were conducted using

the pyls Python package (https://github.com/netneurolab/pypyls) with

Python 3.8.12 (step 6 in Figure 1 and Supplementarymethods).

3 RESULTS

3.1 Demographics

Demographic and clinical characteristics of the participants are

depicted in Table 1.

3.2 Aβ, tau, and annual change in memory scores

As hypothesized, we first revealed associations between Aβ/tau
burden and changes in immediate memory (Aβ: standardized β

[βst] = −0.28, 95% standardized confidence interval [CIst] = [−0.42,

−0.14], R2 = 0.08, p= 1.30×10−4; tau: βst =−0.34, 95%CIst = [−0.48,

−0.20], R2 = 0.12, p = 1.00 × 10−5) and delayed memory (Aβ:
βst = −0.26, 95% CIst = [−0.40, −0.12], R2 = 0.09, p = 3.70 × 10−4;

tau: βst =−0.26, 95%CIst = [−0.40,−0.12], R2 = 0.09, p= 3.60× 10−4)

(Figure 2).

3.3 Aβ, tau, and white matter properties

We then found that increased tau pathology was associated with

decreased global efficiency in both networks (limbic network:

βst = −0.15, 95% CIst = [−0.29, −0.01], R2 = 0.09, p = 3.80 ×10−2;

DMN: βst = −0.18, 95% CIst = [−0.31, −0.05], R2 = 0.25, p = 6.21

×10−3) as shown in Figure 3. Additionally, higher tau levels were

associated with higher MDT, RDT, and FW index within the tracts

of the limbic network (MDT: βst = 0.19, 95% CIst = [0.05, 0.34],

R2 = 0.07, p = 8.91 × 10−3; RDT: βst = 0.18, 95% CIst = [0.03, 0.32],

R2 = 0.03, p = 2.01 × 10−2; FW index: βst = 0.17, 95% CIst = [0.02,

0.31], R2 = 0.07, p = 2.17 × 10−2). No associations were observed

between any diffusion measures within the tracts of the DMN and

tau pathology. Meanwhile, we did not find any significant associations

between Aβ pathology andwhite matter measurements (Figure 3).

3.4 Global efficiency and cognitive resilience

When adding global efficiency as an interactive term in the models

to test the association between AD pathology and change in memory

scores,we found that global efficiency in the limbic networkmoderates

the association between tau pathology and both immediate (βst = 0.15,

95% CIst = [0.01, 0.29], R2 = 0.15, p = 3.36 × 10−2) and delayed

(βst = 0.25, 95%CIst = [0.11, 0.39], R2 = 0.17, p= 4.50× 10−4) memory

decline (Figure 4A,B). Specifically, individuals exhibiting higher global

efficiency in the limbic network demonstrated less severe immediate

and delayedmemory decline in the presence of tau pathology, whereas

thosewith lower global efficiencyexperiencedmorepronouncedmem-

ory decline. We did not find a moderation effect in the relationship

between Aβ pathology and longitudinal memory changes (immedi-

ate memory change: βst = 0.07, 95% CIst = [−0.10, 0.24], R2 = 0.10,

p=4.23×10−1; delayedmemory change: βst =0.14, 95%CIst= [−0.02,

0.31], R2 = 0.12, p = 9.16 × 10−2) (Figure S4A,B). Global efficiency of

theDMNdid notmoderate the association between tau pathology and

changes in either immediate memory (βst = 0.09, 95% CIst = [−0.05,

0.22], R2 = 0.13, p = 2.12 × 10−1) or delayed memory (βst = 0.10,

95% CIst = [−0.04, 0.24], R2 = 0.10, p = 1.69 × 10−1) (Figure 4C,D).

Similarly, global efficiency of the DMN showed no moderation effect

on the association between Aβ pathology and longitudinal memory

changes (immediate memory change: βst = 0.01, 95% CIst = [−0.13,

0.15], R2 = 0.09, p = 8.94 × 10−1; delayed memory change: βst = 0,

95% CIst = [−0.14, 0.14], R2 = 0.09, p = 9.85 × 10−1) (Figure S4C,D).

We found no mediation effect of global efficiency on the association

between AD pathology andmemory decline (Tables S7–S10).
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QIU ET AL. 7

F IGURE 2 Longitudinal memory change and associations with AD pathology. Annual memory changes were calculated based on the
longitudinal RBANS data using linear mixed-effects models, and the average of annual changes for immediatememory and delayedmemory are
shown in (A, B). The associations between Aβ-/tau-pathology are displayed in (C, D). Higher levels of both Aβ and tau pathology were associated
withworse immediate and delayedmemory decline. Linearmodels were adjusted for age and sex. Uncorrected two-sided p-values are presented; †
indicates adjusted p-value≤ 0.05 after FDR correction. βst: standardized estimate β; Aβ, amyloid-β; AD, Alzheimer’s disease; FDR, false discovery
rate; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status.

3.5 Micro-structural measurements and cognitive
resilience

For the diffusion metrics within the tracts of the limbic network, we

found that higher FAT attenuated the association between tau pathol-

ogy and delayed memory decline (βst = 0.22, 95% CIst = [0.07, 0.36],

R2 = 0.15, p = 3.60 × 10−3) but not between tau pathology and

immediate memory (βst = 0.14, 95% CIst = [−0.00, 0.29], R2 = 0.14,

p=5.47×10−2) (Figure5A,B). Furthermore, lowerMDT and lowerRDT

showed attenuated effects of tau pathology on both immediate (MDT:

βst =−0.14, 95%CIst = [−0.25,−0.03],R2 =0.15, p=1.42×10−2; RDT:

βst =−0.16, 95%CIst = [−0.29,−0.04], R2 = 0.15, p= 9.60× 10−3) and

delayedmemory change (MDT: βst =−0.13, 95%CIst = [−0.24,−0.02],

R2 =0.13, p=2.22×10−2; RDT: βst =−0.18, 95%CIst = [−0.31,−0.06],

R2 = 0.15, p = 3.80 × 10−3), while lower FW index within the tracts of

the limbic network was associated with less severe immediate mem-

ory decline as tau pathology increased (βst =−0.08, 95%CIst = [−0.17,

−0.00], R2 = 0.14, p = 4.83 × 10−2) (Figure 5A,B). Similar to what

was found with global efficiency, none of the FW-corrected diffusion

metrics in the limbic network moderated the effect of Aβ pathol-

ogy on either immediate or delayed memory change (Figure S5A,B).

Regarding the DMN tracts, we found that MDT and FW index moder-

ated the association between tau pathology and immediate memory

change (MDT: βst = −0.12, 95% CIst = [−0.24, −0.00], R2 = 0.15,

p= 4.85× 10−2; FW: βst =−0.19, 95%CIst = [−0.33,−0.05],R2 = 0.16,

p = 7.70 × 10−3) while FAT acted as a moderator between tau pathol-

ogy and delayed memory change (βst = 0.21, 95% CIst = [0.06, 0.36],

R2 = 0.14, p = 6.50 × 10−3) (Figure 5C,D). Additionally, we found

that RDT within the tracts of the DMN moderated the association

between tau pathology and immediate (βst =−0.13, 95%CIst = [−0.26,

−0.01], R2 = 0.16, p = 3.66 × 10−2) and delayed memory change

(βst = −0.13, 95% CIst = [−0.26, −0.01], R2 = 0.12, p = 4.12 × 10−2)

(Figure 5C,D). Again, we did not find evidence to suggest that white

matter micro-structural properties of the DMNmoderated the associ-

ation between Aβ pathology and longitudinal memory changes (Figure

5C,D). Additionally, white matter micro-structural measurements of
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8 QIU ET AL.

F IGURE 3 Association between Aβ/tau pathology andmacro-/micro-structural white matter measurements. The scatter plots show the
association between Aβ/tau pathology and global efficiency of the limbic network (A, B) and the DMN (C, D). Linear models were adjusted for age
and sex. βst estimates and 95% standardized CIs, obtained from linear regressionmodels incorporating various white matter measures as
dependent variables are displayed on the right of each panel. Light green represents significant βst estimates for the association between Aβ/tau
pathology andwhitemattermeasures, and pink represents non-significant βst estimates. Aβ, amyloid-β; ADT, free-water corrected axial diffusivity;
βst, standardized estimate β; CI, confidence interval; DMN, default mode network; FAT, free-water corrected fractional anisotropy; FW, free-water
index;MDT, free-water correctedmean diffusivity; RDT, free-water corrected radial diffusivity.

both networks did not mediate the association between AD pathology

andmemory changes (Tables S7–S10).

3.6 Macro-/micro-structural measurements and
health/risk factors

For the PLS analysis between white matter characteristics of the lim-

bic network and health/lifestyle factors, one significant latent variable

emerged (p = 1.00 × 10−4), explaining 71.69% of the covariance in the

data. Figure6Adisplays thebootstrap ratios forwhitemattermeasure-

ments of the limbic network and loadings of the factors for this latent

variable. In this association pattern, we observed that lower education,

female sex, greater WMH burden, and a history of hypertension were

conjointly associated with reduced global efficiency, decreased FAT,

and increasedMDT, RDT, and FW index within tracts of the limbic net-

work. Regarding the DMN, there were two significant latent variables

explaining 67.81% and 23.23% of the cross-block covariance, respec-

tively (p = 1.00 × 10−4, p = 9.00 × 10−3). The bootstrap ratios and

loadings for the first latent variable are shown in Figure 6B. A com-

bination of lower LDL value, older age, greater WMH burden and a

history of hypertension were related to lower FAT, and higher MDT,

RDT, andFWindexwithin tracts of theDMN,while global efficiencydid

not contribute to this pattern. The results for the second latent vari-

able are presented in Figure S6. Univariate analyses corroborate the

PLS findings, with detailed information available in Figure S7.

4 DISCUSSION

Resilience to AD pathology refers to the capacity of certain per-

sons/brains to maintain more optimal cognitive performance despite

the presence of AD pathology. This phenomenon, while extremely

important, is poorly understood. Increasing evidence suggests that

protective lifestyle factors may play a role in cognitive resilience.11-13

Leveraging a longitudinal cohort of cognitively unimpaired older adults

at increased risk of AD, we investigated whether macro-/micro-

structural whitematter properties influence cognitive resilience to AD

pathology in vivo. More specifically, we tested whether global effi-

ciency of the limbic network and the DMN, or diffusion metrics within
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QIU ET AL. 9

F IGURE 4 Moderation by global efficiency on the association between tau pathology and longitudinal memory change. In the limbic network,
higher global efficiency was associated with an attenuated effect of tau burden on both changes in immediatememory (A) and changes in delayed
memory (B). The global efficiency of the DMN showed a non-significant moderation effect on the association between tau pathology on both
change in immediatememory (C) and change in delayedmemory (D). Note thatmoderation effects were assessed using continuous values of global
efficiency, and the data were subsequently divided into terciles for visualization purposes. Specifically, the lowest tercile contains the lower third
of the data distribution (L; colored in yellow), themiddle tercile spans themiddle third (M; colored in light gray), and the upper tercile covers the
upper third (H; colored in dark blue). Age, sex, and graymatter volume (divided by total intracranial volume) of regions for the limbic network or
the DMNwere adjusted for in linear models. Uncorrected two-sided p-values are presented; † indicates adjusted p-value≤ 0.05 after FDR
correction. βst: standardized estimate β; DMN, default mode network.

the tracts of these two networks, moderate the association between

Aβ/tau pathology and longitudinal memory change over ∼7.5 years

of cognitive follow-up. At the macro-structural level, we found that

higher levels of global efficiency of structural networks (especially in

the limbic network) were associated with an attenuated effect of tau

pathology on delayed memory decline. Then, from a micro-structural

perspective, we observed that higher FAT, lower MDT, lower RDT, and

lower FW indexwithin the tracts of the limbic network and of theDMN

mitigate the effect of tau pathology on longitudinal delayed memory

decline. Notably, our study did not uncover any influence of white

matter properties on the impact of Aβ pathology on memory change.

Given that AD pathology also influenced white matter properties, as

a last step, we examined the association between white matter char-

acteristics of both networks and health/risk factors with the aim to

identify factors that could influence white matter integrity. We found

that lower education, older age, female sex, greaterWMHburden, and
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10 QIU ET AL.

F IGURE 5 Moderation by diffusionmetrics on the association between tau pathology and longitudinal memory change. Themoderating
effects of diffusionmetrics within the limbic network (A, B) and DMN (C, D) on the impact of tau pathology on immediate and delayedmemory
change. The scatter plots in each panel show that FAT in the tracts acts as amoderator on the association between tau burden and longitudinal
memory changes. Note that moderation effects were assessed using continuous values of diffusionmetrics (average diffusionmetrics in the tracts
of the limbic network or the DMN), and the data were subsequently divided into terciles for visualization purposes. Specifically, the lowest tercile
contains the lower third of the data distribution (L; colored in yellow), themiddle tercile spans themiddle third (M; colored in light gray), and the
upper tercile covers the upper third (H; colored in dark blue). Age, sex, and graymatter volume (divided by total intracranial volume) of regions for
the limbic network or DMNwere adjusted for in linear models. Uncorrected two-sided p-values are presented; † indicates adjusted p-value≤ 0.05
after FDR correction. βst estimates and 95% standardized CIs, obtained from linear regressionmodels incorporating various diffusionmeasures as
interaction terms, are displayed on the right of each panel. Light green represents significant βst estimates for themoderation effect of diffusion
metrics and pink represents non-significant βst estimates. ADT, free-water corrected axial diffusivity; CI, confidence interval; DMN, default mode
network; FAT, free-water corrected fractional anisotropy; βst, standardized estimate β; FDR, false discovery rate; FW, free-water index;MDT,
free-water correctedmean diffusivity; RDT, free-water corrected radial diffusivity.

a history of hypertension were associated with worse white matter

properties as shown by decreased global efficiency of the limbic net-

work, as well as decreased FAT, increased MDT, RDT, and FW index

within tracts of both networks. Taken together, these findings suggest

that both macro- and micro-structural white matter properties of the

limbic network and the DMN play a role in determining cognitive per-

formance in the face of tau pathology in the preclinical stages of AD

and that a healthy vascular lifestylemay promote optimalwhitematter

properties.

While most studies in AD focus on gray matter,55,56 white matter

is hypothesized to be among the earliest brain structures impacted

in the course of the disease.57 By acting as a communication conduit

between various gray matter regions, white matter plays a key role

in several cognitive processes including immediate and delayed mem-

ory, processing speed, executive functions, and global cognition.58,59

Numerous studies have shown that white matter abnormalities are

associated with worse cognitive decline in individuals with mild cog-

nitive impairment (MCI) and AD dementia.60-65 Decreased global

efficiency in structural networks is increasingly recognized as a key

component of cognitive deficit severity in MCI and AD patients.63-65

At the micro-structural level, reductions in FA and elevations in MD

are commonly observed as indicators of compromised white matter in

addition to being associated with cognitive decline in individuals with

MCI andAD.66,67 Our findings have further highlighted the significance

of network performance and underlying micro-structural properties in

maintaining optimal memory performance in the preclinical phase of

AD. We found that structural global efficiency in the limbic network

and the DMN as well as micro-structural white matter characteristics
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QIU ET AL. 11

F IGURE 6 Results of the PLS analyses betweenwhite matter characteristics and health/risk factors. In each panel, themagnitude of the
bootstrap ratios for white matter measurements within the limbic network (A) andDMN (B) are depicted using a gradient green color scale on the
left. The significance threshold is indicated by dotted lines; bootstrap ratios of white matter measurements above/below the dotted lines are
considered as significant variables contributing to the association pattern. On the right side of each panel, the strengths of the loadings for the
health/risk factors are shown in a gradient orange hue, with error bars representing bootstrap-estimated 95% confidence intervals; * indicates
significant factors that contributed to the association pattern. ADT, free-water corrected axial diffusivity; DMN, default mode network; FAT,
free-water corrected fractional anisotropy; FW, free-water index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MDT, free-water
correctedmean diffusivity; PLS, partial least square; RDT, free-water corrected radial diffusivity;WMH, white matter hyperintensity.

within the tracts of these networks could help reduce memory decline

associated with tau pathology. Importantly, this protective effect was

present prior to cognitive impairments, possibly postponing the clinical

expression of the disease in individuals with preclinical AD.

Surprisingly, even in theDMN, a network commonly associatedwith

Aβ deposition, we did not identify any evidence indicating that white

matter properties modify the association between Aβ pathology and

memory decline. While we hypothesized a protective effect of white

matter properties on both Aβ and tau-related cognitive decline, tau

appears more closely related to neurodegeneration68 and cognitive

decline than Aβ plaques,69 and it is possible that the protective effect

of white matter on memory decline is simply more apparent with tau

than Aβ.
Our findings further indicate that education, age, sex,WMHburden,

and a history of hypertension were all associated with white matter

properties. These results emphasize the potential influence of sociode-

mographic factors and health history on the structural integrity of the

brain’s communication pathways. While certain factors, such as inher-

ent aging processes, are beyondour control, we canpromote education

and manage cardiovascular risk factors through appropriate lifestyle

and medical care. These efforts could play a pivotal role in increasing

both brain resistance and resilience to AD pathology.70-72 Although

further research is warranted to elucidate the underlying mechanisms

driving these associations, our findings underscore the significance

of identifying protective factors to support healthy brain aging and

potentially mitigate tau-related memory decline in the early phase of

AD.

A main limitation of this study is the comparatively small number of

participants with high tau burden, although this is expected in cogni-

tively unimpaired individuals.73,74 To partly counteract this limitation,

we used tau as a continuous variable, based on the fact that tau accu-

mulates over years, and it is usually present before people reach the
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12 QIU ET AL.

threshold for positivity. Still, modest associations were detectable, and

the results were corroborated across differentwhitemattermeasures,

supporting theplausibility of theseassociations. Importantly, increased

tauwas also associatedwith reducedglobal efficiency inbothnetworks

and to a lesser extent with MDT, RDT, and FW index of the limbic net-

work. We therefore cannot neglect that part of our moderation effect

were driven by the negative impact of tau pathology on white matter.

To address this, we tested whether white matter properties mediate

the association between tau and cognition and found no results sup-

porting this pathway. Finally, this study employed a standard atlas for

network node definition. Future researchmay delve into individualized

parcellation methods to examine the nuances of finer-scale functional

variability across individuals. A main strength of the study is the use

of high-quality diffusion MRI data, complemented by the advanced

FW-corrected DTI model. Future studies could benefit from exploring

other techniques, such as fixel-basedmeasures and neurite orientation

dispersion and density imaging.

Overall, our findings indicate thatwhitematter properties influence

the association between tau pathology and cognitive performance in

cognitively unimpaired adults with a family history of sporadic AD.

These results provide support for measures aiming at maintaining

white matter health in the context of cognitive change during the

progression of AD. Our study contributes valuable insights for future

research targeting the prediction of cognitive decline, designing inter-

ventions to improve cognitive resilience, and delaying the clinical onset

of AD dementia.
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