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Abstract

Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulner-
abilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) sub-
fields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions
systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using
structural brain scans of �40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN
patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer.
These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable sig-
natures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level.

NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and
neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and
default network at a subregion level, by capitalizing structural brain scans from �40,000 participants. We thus reveal unique insights on the
nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.

default network fragmentation; higher-order association cortex; hippocampus subfields; polygenic risk score prediction; population
neuroscience

INTRODUCTION

Social isolation can be detrimental. Accumulating evi-
dence suggests social disconnection as a major risk factor for
morbidity and mortality (1, 2). Indeed, it has been found that
�10–20% of adults who live alone report feeling lonely (3).
Yet, it is becoming increasingly clear that experiencing feel-
ings of social isolation, namely loneliness, has diverging bio-
logical correlates compared with an objective lack of social
contact with others (4). Conversely, individuals who are well
surrounded by others can still experience a feeling of inad-
equate social connection (5). Therefore, it is widely
acknowledged that there can be a divide between subjec-
tive satisfaction with their social relationships and peo-
ple’s objective level of social support.

Lonely individuals are particularly characterized by con-
sistent cognitive biases related to processing social cues in the
environment. Additionally, loneliness was reported to entail a
state of hypervigilance for threats in one’s social environment
(5). According to some authors, an aversive feeling of loneli-
ness serves as a biological warning signal that alerts individu-
als to improve their social relationships (6). Yet, the impact of
loneliness extends well beyond the realm of social interaction.
For example, previous studies showed that lonely individuals
tend to prioritize nonsocial rewards over social rewards (7)
and have reduced cognitive control (8), reduced immune
response to viruses (6, 9), heightened stress response (10, 11),
poorer mental health (1), increased susceptibility to major
psychiatric disorders (1), as well as higher risks for alcohol
abuse (12), committing suicide (1, 3), cardiovascular disease
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(13, 14), cognitive decline, and Alzheimer’s disease (15–17).
The association with Alzheimer’s disease also motivated our
investigation of the hippocampus (HC) and default network
(DN) because the hippocampus (18) and DN (19) have long
been recognized as a primary neural pathway implicated in
the pathophysiology of this major neurodegenerative disease.

Furthermore, while disruption of memory capacity is one
of the hallmarks of Alzheimer’s disease (20), the DN and HC
have both been implicated in environment-independent
processing. This invokes cognitive processes such as epi-
sodic memory and mental scene construction, which also
show alterations in lonely individuals (21–23). That these
two neural systems should relate to loneliness may thus be
unsurprising. Indeed, past literature on loneliness has
insisted on the importance of rumination on self-focused
memories (24), poor executive control (8, 25), and negative
bias in the perception of social cues (cf. above). In fact, the
aspects of loneliness that rely upon internally generated
dimensions of cognition have been argued to especially
relate to the DN (26). In rodents and monkeys, the HC has
been found to support highly synchronized and spontaneous
neural activity bursts during states of rest, so-called sharp-
wave ripples (SWRs). These rapid electrophysiological bursts
originate in specific anatomical areas of the hippocampus,
such as CA1, known to be closely affiliated with DN regions,
especially with the medial prefrontal cortex (mPFC) (27). For
example, in monkey brains, hippocampal CA1 neurons have
been shown to send direct axonal output connections to the
mPFC through the fornix white matter pathway (28). This
fact could in part explain the recent finding that the fornix is
the major white matter tract that is most strongly linked to
loneliness (29). The nucleus accumbens (NAc), which is
another major target site of hippocampal CA1 neurons and
the fornix (28, 30), has likewise been linked to the craving for
social connection (31). Alteration of the NAc in loneliness,
and thus the reward circuitry of the brain, may therefore be
a product of this common anatomical pathway. In light of
these details, it has been concluded that since “the pyrami-
dal neurons of the CA1 region provide the only hippocampal
output to cortical targets, this activity must have functional
significance. We just have to figure out what it is” (32). To
take a few steps in this direction, our study aimed to zoom in
on the HC-DN correspondence in the context of subjective
social isolation.

Indeed, recent evidence has shown that DN gray matter
(GM) morphology is strongly associated with loneliness (29).
Analogously, the hippocampus has been discussed to be par-
ticularly affected by social isolation in various animal spe-
cies (33–36). Moreover, researchers have been able to
perform these invasive studies on the animal hippocam-
pus at a subregion and even single-cell level. Such fine-
grained resolution has been difficult to achieve with
respect to DN subregions in the living human brain. Since
the HC and DN subregions are closely related, studying
their structural divergence in lonely individuals provides
a window that can offer refined understanding of the asso-
ciation between loneliness and its brain basis. By joint
analysis of the HC and DN, the existing in-depth knowl-
edge of the animal HC may help elucidate the nature of
potentially human-specific DN subregions. Moreover, in
addition to high-resolution structural brain imaging and

social isolation information, the availability of genetic
data allowed us to also investigate the differing contribu-
tions of genetic influences on structural brain patterns
related to loneliness.

Previous brain imaging studies aimed at brain parcellation
have typically investigated either the default network alone
(e.g., Ref. 37) or the hippocampus alone (e.g., Ref. 38).
Additionally, there is still insufficient work relating animal
studies on anatomically defined subregions of the hippo-
campus to what can be reliably measured in the human
medial temporal lobe with brain imaging techniques.
Advances in the automatic segmentation of the hippocam-
pus using ex vivo brain imaging (39, 40) now allow the reli-
able assessments of microanatomically defined hippocampus
subregions in a way that scales to the �40,000 UK Biobank
Imaging cohort. This enables deeper analyses of the prin-
cipled interrelationships between the evolutionarily more
conserved hippocampus of the allocortex and the default net-
work of the recently expanded neocortex. By leveraging a
framework for high-dimensional codecomposition at a fine-
grained subregion resolution, we here investigate the struc-
tural deviations of the HC-DN covariation signatures that
characterize loneliness.

MATERIALS AND METHODS

Population Data Resource

The UK Biobank is a prospective epidemiology resource
that offers extensive behavioral and demographic assess-
ments, medical and cognitive measures, as well as biolog-
ical samples in a cohort of �500,000 participants
recruited from across Great Britain (https://www.ukbiobank.
ac.uk/). This openly accessible population data set aims to
provide brain imaging for �100,000 individuals, planned for
completion in 2022. The present study was based on the
recent data release from February/March 2020. To improve
comparability and reproducibility, our study built on the uni-
form data preprocessing pipelines designed and carried out
by FMRIB, Oxford University, Oxford, UK (41). Our study
involved data from 38,701 participants with brain imaging
measures and expert-curated image-derived phenotypes of
gray matter morphology (T1-weighted MRI) from 48% men
and 52% women, aged 40–69 yr when recruited [mean age
55 yr, standard deviation (SD) 7.5 yr]. The present analyses
were conducted under UK Biobank application number
25163. All participants provided written informed consent.
Further information on the consent procedure can be found
elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?
id=200).

Loneliness Target Phenotype

Regarding the loneliness target phenotype, we used the yes/
no answer from UK Biobank participants to the question “Do
you often feel lonely?” (data field 2020) as a subjective indica-
tor of the quality of social interactions. Measures of social
relationship quality represent a widely accepted and com-
monly investigated component of social embeddedness (42,
43). Loneliness is more commonly viewed as a subjective feel-
ing of being alone, regardless of social encounter frequency
(44). Conceptually similar and highly correlated scales (45) are

THE LONELY BRAIN

J Neurophysiol � doi:10.1152/jn.00339.2021 � www.jn.org 2139
Downloaded from journals.physiology.org/journal/jn (070.051.255.198) on December 16, 2023.

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://www.jn.org


also contained in other standard measurement tools of social
embeddedness, such as the Revised UCLA Loneliness Scale
(43) and the Interpersonal Support Evaluation List (42). In gen-
eral, a variety of studies showed single-itemmeasures of social
isolation traits to be reliable and valid (46–48). The demo-
graphic differences between lonely and nonlonely individ-
uals in the UK Biobank have been reported elsewhere (29).

Brain Imaging and Preprocessing Procedures

Magnetic resonance imaging scanners (3-T Siemens Skyra)
were matched at several dedicated data collection sites with
the same acquisition protocols and standard Siemens 32-chan-
nel radiofrequency receiver head coils. To protect the anonym-
ity of the study participants, brain imaging data were defaced
and any sensitive metainformation was removed. Automated
processing and quality control pipelines were deployed (41,
49). To improve homogeneity of the imaging data, noise was
removed by means of 190 sensitivity features. This approach
allowed for the reliable identification and exclusion of prob-
lematic brain scans, such as due to excessive headmotion.

The structural MRI data were acquired as high-resolution
T1-weighted images of brain anatomy with a three-dimen-
sional (3-D) magnetization-prepared rapid gradient echo
(MPRAGE) sequence at 1-mm isotropic resolution. Prepro-
cessing included gradient distortion correction (GDC), field of
view reduction using the Brain Extraction Tool (50), and
FLIRT (51, 52), as well as nonlinear registration to MNI152
standard space at 1-mm resolution using FNIRT (53). To avoid
unnecessary interpolation, all image transformations were
estimated, combined, and applied by a single interpolation
step. Tissue type segmentation into cerebrospinal fluid, gray
matter, and white matter was applied by using FAST
[FMRIB’s Automated Segmentation Tool (54)] to generate full
bias-field-corrected images. SIENAX (55), in turn, was used to
derive volumetricmeasures normalized for head size.

For the default network, volume extraction was anatom-
ically guided by the Schaefer–Yeo reference atlas (56).
Among the total of 400 parcels, 91 subregion definitions
are provided as belonging to the default network among
the seven canonical networks. For the hippocampus, 38
volume measures were extracted with the automatic
FreeSurfer subsegmentation (40). The allocortical volu-
metric segmentation draws on a probabilistic hippocam-
pus atlas with ultrahigh resolution at �0.1 mm isotropic.
In particular, this tool from the FreeSurfer 7.0 suite gives
special attention to surrounding anatomical structures to
refine the hippocampus subregion segmentation in each
participant.

As a preliminary data-cleaning step, building on previous
UK Biobank research (29, 57), interindividual variations in
brain region volumes that could be explained by nuisance
variables of no interest were regressed out: body mass index,
head size, headmotion during task-related brain scans, head
motion during task-unrelated brain scans, head position and
receiver coil in the scanner (x, y, and z), position of scanner
table, as well as the data acquisition site, in addition to age,
age2, sex, sex � age, and sex � age2. The cleaned volumetric
measures from the 91 DN subregions in the neocortex and
the 38 HC subregions in the allocortex served as the basis for
all subsequent analysis steps.

Structural Variation Relationships of the Fornix and
Nucleus Accumbens

In the context of HC-DN correspondence, the fornix white
matter tract plays a central role for several important rea-
sons. The fornix constitutes the major output pathway of the
hippocampus, carrying information unidirectionally toward
the neocortical mantle (28). Our previous research has shown
that the fornix is the major white matter tract whose micro-
structural variation is by far most predictable based on DN
subregion volumes alone (58). This fiber pathway has
also recently been shown to be linked to loneliness (29).
Additionally, on its way, the fornix carries axons from hippo-
campus neurons to the nucleus accumbens (28, 30)—a core
node of the reward circuitry, which has been implicated in
the sequelae of loneliness, such as substance abuse (2).

For these reasons, we have conducted preliminary
regression analyses for the fornix [UK Biobank (UKB) data
fields 25095, 25094, and 25061] and for the nucleus accum-
bens (UKB data fields 25024 and 25023). The ancillary
analyses explored their structural relationships with the
subregions composing our DN atlas and those composing
our HC atlas (cf. above). The model specification for these
regression analyses was as follows:

y ¼ x1 � bregion1 þ . . . þ xj � bregionj

where b denotes the slope parameters corresponding to the
brain volumes x for all subregion volumes of either the DN atlas
or the HC atlas (z scored across participants) and y denotes the
mean fractional anisotropy (FA) of the fornix or the volume of
the nucleus accumbens (z scored across participants) for the UK
Biobank participants.

Analysis of Covariation between Hippocampus
Subregions and Default Network Subregions

As the central step of the analytical workflow, we sought
dominant regimes of structural correspondence—signatures
or “modes” of population covariation that provide insights
into how structural variation among the segregated HC can
explain structural variation among the segregated DN.
Canonical correlation analysis (CCA) was a natural choice of
method to interrogate such a multivariate interrelation
between two high-dimensional variable sets (59–61). A first
variable set X was constructed from the DN subregion vol-
umes (number of participants� 91 DN parcelsmatrix). A sec-
ond variable set Y was constructed from the HC subregion
volumes (number of participants� 38 HC parcels matrix):

X 2 ℝn�p

Y 2 ℝn�q

where n denotes the number of observations or partici-
pants, p is the number of DN subregions, and q is the
number of HC subregions. Each column of the two data
matrices was z scored to zero mean (i.e., centering) and
unit variance (i.e., rescaling). CCA addresses the problem
of maximizing the linear correlation between low-rank
projections from the two variable sets or data matrices.
The two sets of linear combinations of the original varia-
bles are obtained as follows:
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LX ¼ XV LY ¼ YU

lX;l ¼ Xvl lY;l ¼ Yul

corr lX;l; lY;lð Þ / lTX;llY;l ¼ max

where V and U denote the respective contributions of X and
Y, LX and LY denote the respective latent “modes” of joint
variation based on patterns derived from X and patterns
derived from Y, lX,l is the lth column of LX, and lY,l is the lth
column of LY. We define modes as general principles of pop-
ulation variation in our target neural circuits that can be reli-
ably extracted in brain structure at the population level. The
goal of our CCA application was to find pairs of latent vectors
lX,l and lY,l with maximal correlation in the derived latent
embedding. In an iterative process, the data matrices X and
Ywere decomposed into L components, where L denotes the
number of modes given the model specification. In other
words, CCA involves finding the canonical vectors u and v
that maximize the (symmetric) relationship between a linear
combination of DN volume expressions (X) and a linear com-
bination of HC volume expressions (Y). CCA thus identifies
the two concomitant projections Xvl and Yul. These yielded
the optimized co-occurrence between patterns of subregion
variation inside the segregated DN and patterns of subregion
variation inside the segregated HC across participants.

In other words, each estimated cross-correlation signature
identified a constellation of within-DN volumetric variation
and a constellation of within-HC volumetric variation that
go hand in hand with each other. The set of k orthogonal
modes of population covariation are mutually uncorrelated
by construction (60). They are also naturally ordered from
the most important to the least important HC-DN covaria-
tion mode based on the amount of variance explained
between the allocortical and neocortical variable sets. The
first and strongest mode therefore explained the largest frac-
tion of joint variation between combinations of HC subre-
gions and combinations of DN subregions. Each ensuing
cross-correlation signature captured a fraction of structural
variation that is not explained by one of the k � 1 other
modes. The variable sets were entered into CCA after a con-
found-removal procedure based on previous UK Biobank
research (cf. above).

Group Difference Analysis

For the derived population modes of HC-DN covariation,
we then performed a rigorous group contrast analysis in the
context of loneliness.We aimed to identify which anatomical
subregions show statistically defensible deviation in the
lonely group compared with the control group. We carried
out a principled test for whether the solution vector obtained
from the CCA (i.e., canonical vectors, cf. above) in the lonely
group is systematically different from the solution vector in
the control group.

More specifically, following previous UK Biobank research
(57), we carried out a bootstrap difference test of the CCA so-
lution from the lonely versus nonlonely groups (62). In 100
bootstrap iterations, we randomly pulled participant sam-
ples with replacement to build an alternative data set (with
the same sample size) that we could have gotten. We subse-
quently performed CCA in parallel by fitting one separate

model to each of the two groups. In each resampling itera-
tion, this approach thus carried out a separate estimation of
the doubly multivariate correspondence between HC subre-
gions and DN subregions in each particular group. The two
distinct CCA solutions from each iteration were then
matchedmode bymode regarding sign invariance andmode
order. Canonical vectors of a given mode that carried oppo-
site signs were aligned bymultiplying one with�1. The order
of the CCA modes was aligned based on pairwise Pearson’s
correlation coefficient between the canonical vectors from
each estimated CCA model. After mode matching, we
directly estimated the resample-to-resample effects of model
parameter estimates by elementwise subtraction of the cor-
responding canonical vectors of a given mode k between the
two groups. We finally recorded these difference estimates
for each vector entry (each corresponding to the degree of
deviation in 1 particular anatomical subregion). The subre-
gion-wise differences were ultimately aggregated across the
100 bootstrap data sets to obtain a nonparametric distribu-
tion of group contrast estimates.

We thus propagated the variability attributable to partici-
pant sampling into the computed uncertainty estimates of
group differences in the UK Biobank population cohort.
Statistically relevant alterations of anatomical subregions in
loneliness were determined by whether the two-sided confi-
dence interval included zero or not according to the 10/90%
bootstrap-derived distribution of difference estimates (57)
in an approach that is faithful to our multivariate analytical
strategy and research question at hand. This nonparametric
approach directly quantified the statistical uncertainty of how
loneliness is manifested in specific subregions of the HC-DN
axis.

Analysis of How Individual Expressions of
Hippocampus-DN Covariation Are Linked to the Genetic
Predisposition for Loneliness

Polygenic risk score (PRS) is a genome-wide analysis tech-
nique that has been shown to successfully quantify individu-
als’ genetic predisposition for a variety of phenotypes. The
approach has become especially potent for complex pheno-
types that implicate tens of thousands of single-nucleotide
polymorphisms (SNPs) with individually small effect sizes,
such as major psychiatric diseases (63–67). PRSs have also
come to be a sharp tool for heritability analyses because of
the advent of large population data sets such as the UK
Biobank (68, 69). Such data resources have allowed the
investigation of the relationship between SNP variation and
interindividual differences in a particular phenotype, which
includes neuroimaging-derived phenotypes (70, 71). For the
purpose of the present study, we have constructed PRSmodels
for the loneliness trait. The subject-specific risk scores were
then regressed onto our expressions of HC-DN modes (i.e., ca-
nonical variates). The integrative imaging-genetics approach
allowed disentangling which mode expressions showed reli-
able relationships to the heritability of loneliness as attribut-
able to thousands of genetic variants.

As is common for PRS analysis workflows, summary sta-
tistics from previously conducted genome-wide associa-
tion studies (GWASs) on our target phenotypes were used
as the backdrop to determine how several hundred
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thousand SNPs are associated with the loneliness trait.
The summary statistics for loneliness were obtained from
a GWAS that was conducted as part of the Psychiatric
Genomics Consortium. Quality control was implemented
by excluding SNPs with a minor allele frequency of <1%,
as well as excluding SNPs with imputation information
score of <0.8. Mismatching, duplicate, and ambiguous
SNPs were also disregarded from further analysis. Quality
control on the base data also involved excluding individu-
als with a difference between reported sex and that indi-
cated by their sex chromosomes and removing overlapping
samples.

The quality-controlled summary statistics were used as
starting point for the PRS model that was built and applied
with the PRSice framework (http://www.prsice.info). This
software tool uses the available collection of effect sizes of
candidate SNPs to form single-subject predictions of
genetic predisposition for a phenotype of interest. In par-
ticular, this tool determined the optimal PRS model based
on the UK Biobank participants (training data, n = 253,295)
of European ancestry who did not provide any brain imag-
ing data (at the time of study). This model training step
involved automated adjustments, such as identifying ideal
clumping and pruning choices, to select the thresholds
that decide which SNPs are included in the PRS model.
Subsequently, once optimized, the final PRS model was
then used to predict the genetic predisposition for each of
23,423 UK Biobank participants of European ancestry with
brain imaging data (test data). This PRS model consisted
of the additive effects of weighted SNPs, whereby the
weighted sum of the participants’ genotypes was com-
puted as follows:

prsj ¼
X

gij � b̂i

where gi denotes an individual’s genotype at SNP i (value 0,
1, or 2), b̂i is the obtained point estimates of the per-allele
effect sizes at SNP i, and j is a particular individual (68).

Finally, Bayesian linear regression was used to regress the
subject-specific predictions of genetic liability for the loneli-
ness trait onto the participant expressions of HC-DN covaria-
tion modes. More specifically, the individuals in the top 5%
predictions (i.e., highest PRS estimates) and the individuals
in the bottom 5% predictions (i.e., lowest PRS estimates)
were considered in a Bayesian logistic regression model with
mode expressions serving as input variables (72–74). In this
multiple regression setup, PRS was regressed against each of
the 25 canonical variates (linearly uncorrelated by construc-
tion) for each individual on the hippocampus side. An analo-
gous multiple regression model was estimated for the
(uncorrelated) 25 canonical variates from the DN side. The
fully Bayesian model specification for these regression anal-
yses was as follows:

yprs ¼ x1 � bmode1 þ . . . þ x25 � bmode25 þ amen sex½ �

þ awomen sex½ � þ amen age sex½ � � agemen

þ awomen age sex½ � � agewomen

bj � N j 0; 1ð Þ

amen � N 0; 1ð Þ

awomen � N 0; 1ð Þ

amen age � N 0; 1ð Þ

awomen age � N 0; 1ð Þ
where bj denote the slopes for the subject-specific 25 mode
expressions as canonical variates xj; yprs denotes the PRS esti-
mates of each participant. Potential confounding influences
were acknowledged by the nuisance variables a, which
accounted for variation that could be explained by sex and (z
scored) age. Once the Bayesian model solution was approxi-
mated with Markov chain Monte Carlo sampling, it yielded
fully probabilistically specified posterior parameter distribu-
tions for each b coefficient corresponding to one of the signa-
tures of allocortical-neocortical covariation (cf. above). The
association with trait heritability of a mode expression was
then determined based on how robustly their corresponding
model coefficients deviated from 0 (e.g., >95% of model
coefficient posterior probability excluded a value of 0) (173,
174).

RESULTS
Previous brain imaging studies aimed at brain parcellation

have typically investigated either the default network alone
(e.g., Ref. 37) or the hippocampus alone (e.g., Ref. 38).
Additionally, there is still insufficient work relating animal
studies on anatomically defined subregions of the hippocam-
pus to what can be reliably measured in the human medial
temporal lobe with brain imaging techniques. Advances in
the automatic segmentation of the hippocampus using ex
vivo brain imaging (39, 40) now allow the reliable assessments
of microanatomically defined hippocampus subregions in a
way that scales to the �40,000 UK Biobank Imaging cohort.
This enables deeper analyses of the principled interrelation-
ships between the evolutionarily more conserved hippocam-
pus of the allocortex and the default network of the recently
expanded neocortex. By leveraging a framework for high-
dimensional codecomposition at a fine-grained subregion re-
solution, we here investigate the structural deviations of the
HC-DN covariation signatures that characterize loneliness.

Structural Variation Relationships of the Fornix

In a preliminary set of exploratory analyses, we sought to
elucidate whether individual subregion volumes of the hip-
pocampus could distinctly explain microstructural variation
of the fornix white matter tract—an important fiber pathway
known to carry axons from the allocortical hippocampus to
the DN. To this end, we performed a multiple regression
analysis to regress the structural integrity of the fornix
(mean FA, diffusion MRI) onto 38 hippocampal subregion
volumes. We found that the bilateral CA1 body dominates in
explaining variation in fornix integrity, followed by the mo-
lecular layer (ML) head of the left hippocampus (Fig. 1A).
Smaller positive effects were found in the bilateral subicu-
lum body, bilateral presubiculum body, bilateral fimbria,
right ML head, and right CA2/3. We found negative effects in
the bilateral hippocampal fissure, left parasubiculum, bilat-
eral CA4 head, as well as bilateral CA4 body. These findings
indicate that several hippocampal subregions have unique
structural relationships with fornix integrity. In a variant of
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this analysis, rather than marginal or partial association
strengths we computed pairwise Pearson correlation strengths
between fornix integrity and each hippocampal subregion.
The hippocampus subregions with the largest correlation coef-
ficient rho were also the subregions with the greatest amount
of explained variance in the multiple regression analysis
(Supplemental Fig. S1; all Supplemental Material can be found
at https://doi.org/10.6084/m9.figshare.15060684). Thus, from
convergent evidence across two different analyses of how

hippocampus subregions track fornix variation, the CA1 body
showed the strongest positive association with the fornix,
whereas the hippocampal fissure displayed the strongest nega-
tive association.

We next sought to regress variation of fornix integrity onto
91 subregion volumes of the DN (Fig. 1B). The subregions
with the strongest positive effects included the left dorsal
mPFC (dmPFC) and the right retrosplenial cortex (RSC).
There was also a small effect in the left RSC, bilateral

B
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Figure 1. Structural correlates of the fornix white matter tract. How can microstructural variation of the fornix be explained as a function of subregion vol-
ume variations in the hippocampus (left) or the default network (DN) (right)? To address these two questions, we have computed separate exploratory
multiple regression analyses based on 38,701 UK Biobank participants. The regression parameter weights corresponding to each specific subregion
(hot and cold colors) outline the structural associations with fornix integrity exclusively explained by that particular subregion. A shows the hippocam-
pus-fornix model based on 38 subregions from the hippocampus segmentation (40). The parameter weights indicate the variation explained in the fornix
specifically by each hippocampal subregion, mapped onto 8 consecutive coronal sections of the left and right hippocampus from anterior (top) to posterior
(bottom) (hot/cold colors = positive/negative volume association). The subregions with the strongest positive volume effect are CA1 body of the left and right
hippocampus as well as left molecular layer head. The strongest negative relations with fornix microstructure are found in left and right hippocampal fis-
sures. B shows the DN-fornix model based on 91 subregions in the Schaefer–Yeo parcellation of the DN. The parameter weights indicate the fornix varia-
tion explained specifically by each DN subregion. The subregions with the strongest marginal volume effect among DN subregions are bilateral posterior
cingulate cortex (PCC), bilateral retrosplenial cortex (RSC), and left dorsal-medial prefrontal cortex (dmPFC). Overall, these results suggest that fornix archi-
tecture has differentiated structural relationships with subregions of the hippocampus and midline DN. DG, granule cell layer of dentate gyrus (GC-DG-ML);
ML, molecular layer; OFC, orbitofrontal cortex; Para, parasubiculum; PrS, presubiculum; Sub, subiculum, vmPFC, ventromedial prefrontal cortex.
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ventromedial prefrontal cortex (vmPFC), and left dorsolat-
eral prefrontal cortex (dlPFC). Conversely, we located the
strongest negative effects to the bilateral posterior cingulate
cortex (PCC). Furthermore, in the companion analysis using
Pearson correlation between each DN subregion and the for-
nix, mPFC subregions had in general strong positive effects
(Supplemental Fig. S2). On the other hand, PCC/RSC subre-
gions had weak or negative effects (Supplemental Fig. S2).
These findings thus made apparent the subregion-specific
relationships of how DN subregions track fornix integrity in
our UKB cohort, with lateral DN subregions showing more
subtle effects and midline DN subregions showing the most
prominent effects.

Structural Variation Relationships of the Nucleus
Accumbens

Using the identical analysis approach (cf. above), we next
explored how the volume of the nucleus accumbens (NAc)
can be explained as a function of hippocampal subregion vol-
umes. These multiple regression analyses revealed that bilat-
eral CA1 body and right molecular layer head subregions
explained the most variation in NAc volume (Supplemental
Fig. S2A). Small positive effects were also found in CA2/3 head
of the right hippocampus, left molecular layer head, and
bilateral hippocampus amygdala transition area (HATA).
Conversely, there was a strong negative association of the
NAc with bilateral hippocampal fissure as well as with left
parasubiculum. Interrogating the HC-NAc relationships thus
showed distinct explanatory effects among subregions. In par-
ticular, the hippocampal subregions that explained the most
variation in NAc recapitulated those that also best explained
fornix integrity (cf. above). To further investigate the associa-
tions of the NAc, we next computed gross pairwise Pearson
correlation coefficients of each hippocampal subregion with
the NAc. We observed a noticeably stronger correlation for
CA1 head than any other subregion (Supplemental Fig. S3),
although CA1 head showed a negligible effect in the multiple
regression analysis of the NAc on hippocampus subregions.
Thus, although CA1 head on its own has a strong correlation
with the NAc, when considered in a joint model with all other
hippocampal subregions in our atlas it explained little NAc
variation in a unique way. This observation suggests that dis-
tinct hippocampal subregions, other than CA1, make separate
contributions that together better explain volume variation in
the NAc.

To complement these hippocampus analyses, the rela-
tionship between the NAc and DN subregions was also
investigated with a dedicated multiple regression analysis.
The subregions with the largest explained variance in NAc
volume included right orbitofrontal cortex (OFC), left OFC,
left posterior superior temporal sulcus (pSTS), left ventro-
lateral prefrontal cortex (vlPFC), and left vmPFC (Fig. 2B).
Conversely, strong negative associations with NAc volume
were located to the left and right vmPFC, left and right
PCC, as well as right temporal pole. In a Pearson correla-
tion analysis of each DN subregion with the NAc, we also
observed that mPFC subregions had generally strong cor-
relations with the NAc and PCC/RSC subregions had gen-
erally weak correlations (Supplemental Fig. S4). Overall, in
contrast to our HC-centric analyses for the fornix and NAc

(cf. above), DN subregions were found to have individually
varying relationships with the NAc that noticeably drew a
different picture than our results obtained for the fornix-
DN relationship.

Structural Covariation between Hippocampus and
Default Network at the Subregion Level

In our core analysis, we explored the principled signa-
tures of structural covariation between the full set of 38
hippocampal subregions and the full set of 91 DN subre-
gions. The concurrent patterns of subregion variation
within the hippocampus and within the DN were com-
puted using doubly multivariate pattern-learning analysis.
In so doing, we achieved a codecomposition of hippocam-
pal subregion volumes and DN subregion volumes. Each
of the top 25 modes of covariation was characterized based
on how much of joint variance a particular signature
explained, with the most explanatory signature (mode 1)
achieving a canonical correlation of rho = 0.51 (measured
as Pearson’s correlation coefficient) (Supplemental Table
S1). The second most explanatory signature (mode 2)
achieved a canonical correlation of rho = 0.42, the third
rho = 0.39, the fourth rho = 0.31, the fifth rho = 0.27, and
the sixth rho = 0.23, through to the twenty-fifth signature,
which had rho = 0.06 (see Supplemental Table S1 for full
list). This analysis thus established the scaffold for all sub-
sequent analyses that delineates how multiple comple-
mentary hippocampal patterns covary hand in hand with
DN patterns.

Differences in the Hippocampus-Default Network
Covariation in Loneliness

On the basis of the identified population signatures of HC-
DN covariation, we investigated the neurobiological mani-
festations of loneliness in our UKB sample. This was accom-
plished by examining robust subregion-level divergences in
how hippocampal patterns are coexpressed with DN patterns
between groups of lonely versus nonlonely participants. To
this end, we first analyzed loneliness by a rigorous group dif-
ference analysis between the structural patterns of covaria-
tion in the lonely and nonlonely groups. This revealed the
precise subregions contributing to the structural HC-DN
covariation that systematically diverged between the two
groups, for eachmode of the CCA.

We uncovered a multitude of modes with systematic group
differences in either specific HC and/or DN subregions. We
also found modes with no significant structural divergences
in any hippocampal or DN subregion. From here on, a subre-
gion that was observed to have a robustly different weighting
within a mode’s canonical vector, between the lonely and
nonlonely groups, is termed a “hit” (i.e., an observed struc-
tural divergence in lonely individuals). Across all 25 examined
modes, the group contrasts amounted to 28 total hits for HC
subregions and 40 total hits for DN regions. Most of these sub-
region hits occurred in earlier modes. For example, in the first
mode we found 26 DN hits (60% of the DN total), and in the
first three modes we found 22 HC subregion hits (78.6% of
the HC total). We also noted specific subregions with
repeated hits across modes: The largest number of hits was
in molecular layer body (4 hits), molecular layer head (3),
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CA1 head (3), CA1 body (3), and presubiculum head (3). In
the DN, the greatest number of hits was observed in mid-
line subregions (77.5% of the DN total) such as the RSC and
mPFC. We observed few hits in lateral temporal or parietal
subregions, with a total number of hits in 5 temporal
(12.5%), 13 PFC (32.5%), 2 parietal (5%), and 20 PCC/RSC
(50%) subregions.

The constellation of structural divergences between lonely
and nonlonely groups in mode 1 (Fig. 3) provided a rough
portrait of the hits that typically emerged across the next 24
modes. In mode 1 we observed hits in bilateral CA1 head and

left CA1 body, the adjacent left presubiculum head and body,
as well as the bilateral subregions internal to the hippocam-
pus (ML and fissure). Concurrently, the DN hits for mode 1
were clustered in adjacent subregions in the bilateral PCC/
RSC region and mPFC (2 temporal, 8 PFC, 1 parietal, 15 PCC).
Additionally, the subregions with hits that played an espe-
cially strong role in the dominantmode’s patterns were bilat-
eral CA1 body, bilateral fissure, bilateral RSC, and left
dmPFC. In contrast, for the secondmode of the HC-DN cova-
riation, we observed hits only in the left parasubiculum and
left ML head, with no hits in DN regions (Supplemental Fig.
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Figure 2. Structural correlates of the nucleus accumbens (NAc). Regression parameter weights of various subregions in separate exploratory multiple
regression analyses outline the volume effects on the NAc, due exclusively to each subregion in either the hippocampus or default network. A shows
the hippocampus (HC)-NAc model mapped onto 8 consecutive coronal slices of the left and right HC in the anterior (top)-to-posterior (bottom) direction.
The parameter weights indicate the structural variation uniquely explained in the NAc specifically by each hippocampal subregion (hot/cold colors = pos-
itive/negative volume association). The subregions with the strongest positive volume effect are CA1 body of the left and right hippocampus as well as
right molecular layer (ML) head, in line with our analogous analyses on the fornix (Fig. 1A). The strongest negative volume effects are left and right hippo-
campal fissures. B shows the default network-NAc model. The parameter weights indicate the variation explained in the NAc specifically by each default
network subregion (warm/cold colors = positive/negative volume association). The subregions with the strongest volume effect among default network
subregions are bilateral orbitofrontal cortex (OFC), left posterior superior temporal sulcus (pSTS), and left ventrolateral prefrontal cortex (vlPFC). Overall,
these results suggest there are diverse structural relationships between the NAc and hippocampal subregions, which are substantially similar to the
structural relationships of the fornix (Fig. 1). Yet, the relationship of the NAc with default network subregions shows substantially different volume effect
sizes for the most prominent cortical regions compared with the fornix. DG, granule cell layer of dentate gyrus (GC-DG-ML; HATA), hippocampal amyg-
dala transition area; ML, molecular layer; Para, parasubiculum; PrS, presubiculum; vmPFC, ventromedial prefrontal cortex.
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S5). For mode 3, we observed eight HC hits and no DN hits
(Fig. 4); for mode 4, one hit in the HC tail and no DN hits for
mode 5, one HC and one DN hit (Fig. 5); formode 6, no hits; for
mode 7, no HC hits and one hit in the right temporoparietal
junction formode 8, HC hits in three subregions, the left CA1
head, left CA2/3 head, and left granule cell layer of dentate
gyrus (GC-ML-DG) head, and no DN hits (Supplemental Fig.
S6); and for mode 9, one HC hit and seven DN hits (Fig. 6).
We observed no hits inmodes 10–13. In mode 14 we found no
HC hits and three DN hits: left superior temporal sulcus
(STS), right anterior cingulate cortex (ACC), and left RSC
(Supplemental Fig. S7). Inmode 15, we found no HC hits and
two hits in DN subregions: bilateral PCC (Supplemental Fig.

S8). Of note, we observed no hits in any of the modes
between mode 16 and mode 25. Thus the dominant modes,
which account for more population covariance, are most
strongly coupled with loneliness.

These results suggest that specific subregions that play a
role in the HC-DN correspondence exhibit systematic diverges
in individuals with loneliness. Additionally, our findings spec-
ify within which context of structural dependence (mode of
covariation) a subregion diverged between the two groups.
Overall, across loneliness’s relationships to our discovered
population modes of joint volume variation, CA1 head and
body, molecular layer head and body, and presubiculum head
showed the largest number of hits for hippocampal
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Figure 3. Loneliness is associated with distinct divergences in hippocampus (HC)-default network (DN) covariation. We explored the structural covaria-
tion between the 38 subregions of the HC and 91 subregions of the DN, by means of a codecomposition based on a canonical correlation analysis
(CCA). We subsequently determined how the ensuing subregion patterns diverged in individuals with loneliness. Shown here are the subregion diver-
gences in mode 1 of HC-DN covariation. Mode 1 of the CCA solution achieves the most explanatory covariation, with a canonical correlation of rho =
0.51. A shows the HC subregion pattern (left, one canonical vector of mode 1) with parameter weights that robustly diverge between lonely and non-
lonely groups in mode 1; mapped onto 8 consecutive coronal slices of the left and right HC in the anterior (top)-to-posterior (bottom) direction. B shows
the DN subregion pattern (right, other canonical vector of mode 1) that robustly diverged between the lonely and nonlonely groups. Overall, within the
dominant structural covariation pattern between the HC and the DN there are specific subregions whose volumes systematically diverge in lonely indi-
viduals. The most pronounced structural divergences are in bilateral CA1 body and hippocampal fissure, as well as subregions bilaterally in the posterior
cingulate cortex (PCC), retrosplenial cortex (RSC), and dorsomedial prefrontal cortex (dmPFC). Thus, specific HC and DN anatomical subregions are pref-
erentially linked loneliness. ML, molecular layer; PrS, presubiculum; STS, superior temporal sulcus; Sub, subiculum; TPJ, temporoparietal junction.
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subregions. On the other hand, there was a preponderance of
hits located to midline cortical structures, such as the
mPFC and PCC/RSC, for DN subregions. Thus, our popula-
tion-level findings made apparent that within structural
covariation modes, loneliness was mostly concomitant
with divergences in DN midline subregions that were
grounded in parallel divergences in the CA1 and ML subre-
gions of our hippocampus atlas.

Genetic Predisposition for Loneliness

We finally sought to interrogate whether the uncovered
HC-DN covariation expressions featured systemic relation-
ships with the participants’ liability for loneliness (cf.
MATERIALS AND METHODS). For this purpose, we first computed
polygenic risk score predictions of loneliness risk for our UK
Biobank participants. We observed that there was a statisti-
cally relevant relationship between loneliness PRS score and

participant expressions (i.e., canonical variates) of modes 7,
8, 9, and 22 in the hippocampus and the participant expres-
sions of mode 7 in the DN (Fig. 7). On the whole, there was
genetic predisposition linked to the expressions of later
modes compared with the earlier modes achieving greater
explained variance. This analysis suggested that the expres-
sion of the identified HC-DN signatures tracks the purely
heritable components of loneliness due to single-nucleotide
polymorphism. As a matter of course, the signatures not
identified likely have contributions that are not due to
genetic factors.

DISCUSSION
We have tailored an analytical framework to examine how

the structural substrates of the HC-DN correspondence sys-
tematically deviate in loneliness. We work toward this goal
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Figure 4. Divergences in CA1, subiculum (Sub), presubiculum (PrS), and molecular layer (ML) subregion volumes are preferentially associated with loneli-
ness. Shown are the subregion divergences inmode 3 of hippocampus (HC)-default network (DN) covariation.Mode 3 of the canonical correlation analy-
sis (CCA) solution achieves the third most explanatory hippocampal-DN covariation, with a canonical correlation of rho = 0.39. A exhibits the (HC)
subregion pattern (left, one canonical vector of mode 3) with paramater weights that robustly diverge between lonely and nonlonely groups in mode 3. B
shows the DN subregion pattern (right, other canonical vector ofmode 3) of the DN (right) that robustly diverge between lonely and nonlonely groups. The
most pronounced divergences in the loneliness group are in right ML head and body, right Sub head and body, as well as right CA1 head. Thus, similar to
mode 1, within the third most explanatory pattern of HC-DN covariation, loneliness is concomitant with hippocampal divergences in CA1, Sub, PrS, and ML.
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by directly estimating principled covariation signatures that
delineate how hippocampus subregion volumes are coex-
pressed with DN subregion volumes in�40,000 participants
from the UK Biobank cohort. In so doing, our study aimed to
refine the understanding of the interrelationship of the DN
with loneliness. By anchoring our analysis in HC-DN cova-
riation, we aimed to facilitate the interpretation of poten-
tially human-specific DN brain regions based on their
hippocampal subregion affiliates. Indeed, the evolutionarily
conserved hippocampus has been extensively studied in ani-
mal species at a single-cell resolution. This approach can
detect patterns in the structural brain scans that are not dis-
coverable by any analysis of the HC or the DN alone.

The DN has recently been found to be the major brain net-
work that is most closely associated with loneliness (29).
However, we found a high degree of heterogeneity in the
relationship of individual DN subregions with loneliness in
the context of population modes of HC-DN volume covaria-
tion. In particular, we found that especially midline

structures of the DN tended to diverge in lonely individuals.
Analogously, the hippocampal subregions with the most
divergences across modes were CA1 and molecular layer.
The allocortical-neocortical divergences implicating midline
DN as well as the CA1 and molecular layer of the HC stood
out, especially in modes 1, 3, and 5 of our analysis. The con-
comitant structural divergences of HC and DN subregions in
lonely individuals may in part be explained by the varieties
of internally directed cognition that have been consistently
associated with each neural system—such as episodic mem-
ory processing, sense of self, and prospective cognition (21,
75–77). Especially midline structures of the DN such as the
vmPFC (78), posteromedial cortex (79, 80), and the RSC (75)
have been found to serve these types of neural processes. In
line with this notion, the fornix—known to be a direct medi-
ator between the HC and midline DN subregions—has been
found to be the white matter structure that is most strongly
linked to loneliness profiles (29). This observation is of rele-
vance to our present considerations, as direct neuron-to-
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Figure 5. Loneliness is associated with divergences in left hemisphere CA1 and retrosplenial cortex (RSC). Shown are the subregion divergences in
mode 5 of hippocampus (HC)-default network (DN) covariation. Mode 5 of the canonical correlation analysis (CCA) solution achieves the fifth most ex-
planatory hippocampal-DN covariation, with a canonical correlation of rho = 0.27. A exhibits the HC subregion pattern (left, one canonical vector of
mode 5) with parameter weights that robustly diverge between lonely and nonlonely groups in mode 5. B shows the DN subregion pattern (right, other
canonical vector of mode 5) of the DN (right) that robustly diverge between lonely and nonlonely groups. The only subregion divergences associated
with loneliness are in left CA1 body and the left RSC. These results accentuate the selectivity of the subregion divergences within a particular mode and
highlight CA1 and RSC in loneliness.
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neuron connections between CA1 and subiculum of the hip-
pocampus with mPFC, OFC, and RSC subregions of the DN
have been demonstrated through invasive axonal tracing
studies in monkeys (28, 81–84). Human studies have also
found that the functional connectivity strength between the
hippocampus and mPFC correlates with the imagination
of mental scenes (78, 85, 86) and precommissural fornix in-
tegrity correlates with episodic richness (87, 88). Indeed,
these earlier findings may explain various aspects of the
psychological alterations that are characteristic for lonely
individuals.

For example, lonely individuals have been described to
more frequently reiterate social events from the past, imagine
hypothetical or future encounters with others, and reminisce

on nostalgic memories (89–93). The joint divergences of CA1
and midline DN subregions thus suggest an intimate link
between these spatially distributed subregions, a link that 1) is
supported by the fornix, 2) implicates internally directed cog-
nition, and 3) is systematically altered in lonely individuals.
The notion of CA1, molecular layer, OFC, and mPFC subre-
gions having preferential structural relationships with the for-
nix receives additional support from our multiple regression
and pairwise Pearson’s correlation analyses. Indeed, each of
these subregions showed especially strong relationships with
the fornix in both analyses. In accord with the growing knowl-
edge of the fornix, it is possible that these concordant findings
reflect a difference in the neurocognitive processes necessary
for episodic memory retrieval (88, 94). For example, the CA1
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Figure 6. Loneliness is associated with subregion divergences in parasubiculum (Para) and a distributed set of bilateral default network (DN) subregions.
Shown here are the subregion divergences inmode 9 of hippocampus (HC)-DN covariation.Mode 9 of the CCA solution achieves the ninth most explan-
atory HC-DN covariation, with a canonical correlation of rho = 0.18. A exhibits the HC subregion pattern (left, one canonical vector ofmode 9) with param-
eter weights that robustly diverge between lonely and nonlonely groups in mode 9. B shows the DN subregion pattern (right, other canonical vector of
mode 9) of the DN (right) that robustly diverged between lonely and nonlonely groups. Overall, there are divergences for lonely individuals in left Para,
as well as bilateral ventromedial prefrontal cortex (vmPFC), left retrosplenial cortex (RSC), bilateral orbitofrontal cortex (OFC), and bilateral superior tem-
poral sulcus (STS). These results emphasize the bilateral tendency of the DN divergences observed for loneliness. The results also highlight a coherent
set of reward-related subregions, as most of the subregions identified are also found to have a strong volumetric relationship with the nucleus accum-
bens (Fig. 2).
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and subiculum, which are the primary origin of precommis-
sural fornix projection fibers to the PFC and NAc (28, 30, 95),
have been found to be crucial for proto-episodic memory in
rodents (27, 96) and detailed episodic autobiographical mem-
ory in humans (97, 98). Hence, the known cognitive upregula-
tion in memory retrieval and social perception biases of
lonely individuals may be rooted in how the fornix pathway
assists HC-DN communication.

The cognitive biases of the loneliness trait further include
perceiving one’s social world as a more threatening place (4,
99), such as remembering more negative information from
past social encounters and expecting more negative social
interactions (5). On the basis of these earlier psychological
insights, we expected that the subregions with multiple
divergences in lonely individuals would show a strong rela-
tionship to the NAc, a key node of the brain’s reward cir-
cuitry that has previously been associated with loneliness
(31). In support of this idea, our multiple regression analysis
revealed that CA1, molecular layer, vmPFC, and OFC each
showed strong relationships with the NAc. The seemingly
separate psychological and behavioral characteristics of
loneliness may thus be a product of the remodeling of inte-
grated neural systems. This notion receives further support

from the similarity in the subregion associations revealed
through our separate multiple regression models of the hip-
pocampus. In these, we observed a strong overlap between
the hippocampal subregions having strong relationships
with either the NAc or fornix. Indeed, the NAc receives the
bulk of its hippocampal inputs through the precommissural
fornix pathway (83, 100). Hence, our results substantiate pre-
vious findings on cross-associations between the CA1 of the
hippocampus, fornix, mPFC, and NAc.

In addition to the collective divergences in hippocampal
andmPFC subregions in lonely individuals, our analysis pin-
pointed parallel findings in other DN subregions. In particu-
lar, the majority of DN subregion divergences we found were
in the PCC, and especially RSC. In general, these subregions
also showed strong structural relationships with the fornix
in our regression analyses. In line with our results from brain
imaging modeling, direct axon tracing studies in rodents
have documented CA1 and subiculum as the main hippo-
campal projection sites to the RSC (101, 102). Monkey experi-
ments have additionally reported that direct HC-RSC
projections are chiefly mediated through the subiculum, a
close interaction partner of hippocampal CA1 (84, 102–104).
In conjunction with the CA1 structural divergences we
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Figure 7. The genetic predisposition for loneliness is associated with the expression of specific hippocampus(HC)-default network (DN) covariation pat-
terns. A polygenic risk score (PRS) analysis was conducted to estimate the subject-specific heritable tendency for loneliness based on genome-wide
effects in single-nucleotide polymorphisms. The subject-specific PRS estimates were then regressed against the expressions of each of the modes of
structural covariation between the HC and DN. The relevance of the heritability effects was judged based on the posterior parameter distributions
inferred by the Bayesian logistic regression model (histograms). The x-axis of each plot represents the b coefficient of the model parameter, and the y-
axis of each plot represents the plausibility of each coefficient value. A value of 0 indicates no association between PRS and interindividual mode
expression. Overall, loneliness predisposition was related to the expression of modes 7 and 9 on the HC side and to mode 7 on the DN network side.
These results demonstrate that specific mode expressions are robustly linked to the predisposition of becoming lonely. The three posterior distribution
histograms show convergence across three different Markov chain Monte Carlo runs. Overall, this pinpoints the specific neurobiological signatures in
the HC and DN that relate to the heritable components of loneliness.
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observed in lonely individuals, we also observed four total
subiculum divergences across all examined signatures.
Hence, our population neuroscience evidence for interde-
pendence between CA1 and subiculum in the allocortex and
RSC subregions in the neocortex directly confirms established
knowledge from invasive animal experiments (105). Thus, an
attractive interpretation of these findings of structural diver-
gences in RSC subregions for lonely individuals (inmodes 1, 5,
9, 14, and 15) invokes a difference in the capacity to visualize
internally centered thoughts. Indeed, among the limited
knowledge regarding the function of the human RSC, this
part of the posterior midline is believed to assist in spatial
navigation, episodic memory, visualizing details of mental
scene construction, and perhaps mentalizing capability (21,
26, 106–108).

Moreover, RSC-mediated mental scene construction could
be one aspect of a more general role the DN has in spontane-
ous cognition, such as task-free “mind-wandering” (109,
110). In fact, the hippocampus has been found to support
stimulus-independent neural activity (111), which would be a
perfect partner for these DN functions, via so-called sharp-
wave ripples (SWRs) (112, 113). These phenomena are mani-
festations of spontaneous neural activity synchronizations
in the hippocampus circuit that occur independent of any
environmental cues or externally structured tasks (114, 115).
SWRs have been carefully studied through electrophysiologi-
cal experiments in rodents and other animals, as opposed to
most of the neural activity specific to regions of the human
DN (27, 116). Of relevance for our present considerations, CA1
pyramidal neurons are purported to underlie the expansive
“ripples” of SWR activity. The preceding “sharp wave,” on
the other hand, is most pronounced in the apical dendrites
of CA1 neurons (27). Along this line, the hippocampus atlas
used for our study collapsed the apical dendrites (both the
stratum radiatum and stratum lacunosum moleculare) of
subiculum and CA neurons into one composite subregion:
the molecular layer (40). Thus, the molecular layer and CA1
of our set of human hippocampus subregions offered a way
to analyze systematic alterations of the neural substrates
shown to be highly visible locations of SWR activity in the
hippocampus of rodents andmonkeys.

Indeed, the CA1 and molecular layer had the greatest num-
ber of total hits in lonely individuals. More specifically, there
were seven total hits in the molecular layer and six total hits
in CA1 across all examined modes. Since our analyses
revealed co-occurring divergences in midline DN subregions,
SWR activity suggests itself as a compelling interpretation
that can accommodate these collective results. The sensory-
distal processing regimes realized by the DNmay be perfectly
attuned to integrating spontaneous SWR activity. For exam-
ple, in rodents, CA1 cell activity and coupled SWR have been
shown to assist in prospective cognitive processes (117), such
as simulating spatial trajectories that were never experienced
before (118–120). A functional interaction between hippocam-
pal SWR activity and association cortex regions, such as the
RSC, has even been demonstrated in animal species (105, 121).
For example, in rats it has been shown that auditory cortex ac-
tivity predicts subsequent SWR activity (122). Conversely, hip-
pocampal activity also predicted subsequent activity in the
auditory cortex. On the basis of these results, the authors pro-
posed that immediately before and after SWR occur there is

rapid information flow in a cortical-hippocampal-cortical
loop (122). Similarly, studies in primates (123, 124) have also
identified the RSC and PCC to be the regions of the neocortical
mantle that are most closely coupled with hippocampal SWR
(124). Our findings of selective structural divergences in both
the CA1 and molecular layer as well as RSC subregions across
modes is thus very suggestive of a difference in the allocorti-
cal-neocortical information processing pathways that involve
SWR activity.

Facilitation of mental scene construction is discussed as
one of the main functional contributions of the hippocampus
(21, 109). It thus appears plausible that a systematic alteration
of SWR activitymay affect the vividness of an individual’s epi-
sodic memories and imaginings (125). In fact, SWR activity
has been proposed to underlie trajectory sequence replay in
rodents as well as “offline” states of human cognition, such as
daydreaming (32). Thus, the increased frequency and inten-
sity of nostalgic reminiscence that has been associated with
loneliness may potentially also be associated with altered
SWR activity (91). A strong relationship between SWR and
loneliness is additionally suggested by their shared associa-
tion with reward processing. Indeed, loneliness alters the sub-
jectively perceived valence of social and nonsocial reward in
humans (7), while SWR activity has been demonstrated to be
responsive to reward-contingent processing in animals (126–
128). Similarly, the fundamental place cell representations of
the CA1 pyramidal cells, which underlie SWR activity (cf.
above), were reported to intimately relate to reward process-
ing (129, 130). Certain populations of CA1 cells have even been
found to act as a dedicated channel for reward-related proc-
essing across environments (131). These findings and conclu-
sions from previous animal experiments therefore appear to
dovetail with our analyses in people highlighting the NAc
with CA1 and molecular layer. We hence wonder whether the
attempt to fill the perceived social void through mental im-
agery in lonely individuals coincides with interlocked struc-
tural alterations in the allocortical-neocortical covariations.

However, the relationship between the structure of the HC
and DN and the tendency to feel socially disconnected from
others may only be partially determined by one’s environ-
ment and life experience. Indeed, our genome-wide analyses
showed that participant-specific expressions of HC-DN cova-
riation have distinct links to the heritable components of
loneliness. This is in accord with previous research showing
that loneliness has consistent, yet subtle genetic underpin-
nings (132). For example, twin studies have identified genetic
contributions to individual differences in feelings of loneli-
ness that are as high as �48% (133). Recent genome-wide
association studies with large sample sizes [e.g., n = 452,302
(134)] have also reported the contribution of common genetic
variants to loneliness to range from 4% to 27% (134–136).
These earlier genome-wide analyses have additionally
pointed out a small number of specific gene loci that are sig-
nificantly associated with loneliness and regular participa-
tion in social groups (134).

An underlying genetic contribution to the experience of
loneliness is further supported by recent genome-wide
correlation analyses. For example, one study has demon-
strated that our UK Biobank loneliness trait significantly
shared underlying genetic factors with each of 264 differ-
ent demographic, lifestyle, and disease phenotypes (29).
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Another study has demonstrated a strong genetic correla-
tion between loneliness and neuroticism (136). Taken to-
gether, these recent population neuroscience studies
indicate that the genetic determinants underlying loneli-
ness are probably quite polygenic and involve complex
gene-environment interactions. In our study, these previ-
ous insights were extended by relating PRS for loneliness
with the interindividual expression of multiple spatially over-
lapping signatures of HC-DN covariation. Importantly, we
have identified a select subset of HC-DN covariation modes
that had a significant relationship with genetic predisposition
for loneliness.

In particular, we found a significant heritability effect for
the expression of the loneliness-specific signature inmodes 8
and 9, both of which also showed multiple subregion diver-
gences in lonely individuals. We also noted a particular con-
cordance between our PRS analysis of loneliness with
our uncovered subregion-specific divergences in mode 9.
Intriguingly, in our multiple regression analyses of the NAc,
each subregion that showed divergence in mode 9 for loneli-
ness (i.e., OFC, vmPFC, pSTS, and left parasubiculum) was
found to have a strong relationship with the NAc. These con-
vergent results may suggest that a specific aspect of the
genetic predisposition for loneliness consists in innate ten-
dencies involving reward-related processing. This view
would be in line with past findings associating loneliness
with social reward valence (7), substance abuse or depend-
ence (12, 137), executive function (138, 139), and impulsive
behaviors (140). Recently, it has even been reported that
social isolation is linked to altered neural activity responses
in midbrain regions and induces social craving in a way that
may be similar to how fasting causes hunger (141). These
reports further motivate a suspicion that the unmet desire
for social connection in people is related to the same reward
mechanisms in nonsocial reward. More specifically, the
b-endorphin system, which is involved in pain management
and reward valence, has also been shown to be integral to
social bonding through touch in multiple mammalian spe-
cies (142–144).

However, our findings on how structural HC-DN covaria-
tion relates to the genetic predisposition for social isolation
may be better framed in terms of susceptibility to the envi-
ronment, such as the previously proposed notion that the
driving forces behind genetic heritability are not direct but
rather come into effect through an altered sensitivity to envi-
ronmental conditions (145). For example, whereas oxytocin
and social support have been shown to interact in the stress
response (146), a single-nucleotide polymorphism in the oxy-
tocin receptor gene (OXTR) has been found to differentially
affect stress response depending on adequate social interac-
tions with others (147). Indeed, the heightened levels of
stress in humans with social isolation has been argued to be
fundamentally different from a simple general and diffuse
stress response (6, 148).

In fact, animal studies have afforded detailed accounts of
the effects of social isolation stress on the hippocampus (149),
focusing on the apical dendrites of CA neurons (150). When
considered in conjunction with this animal literature, our
analysis could therefore extend our incomplete understand-
ing of the brain basis of social isolation-related stress by iden-
tifying the precise allocortical and neocortical anatomical

subregions at play. A possible manifestation of the effects of
social isolation-related stress in our study is the pronounced
total number of divergences in themolecular layer. In particu-
lar, we found seven total hits in the molecular layer across all
examined modes for lonely individuals. As mentioned above,
this molecular layer subregion consisted of a combination of
the apical dendrites of subiculum and CA neurons, with CA1
composing the largest portion (40). In light of this, the obser-
vation of preferential hits in the molecular layer of lonely
individuals broadly aligns with past studies on chronic stress
in rodents, tree shrews, and nonhuman primates. Indeed, ex-
perimental studies in these species have reported detailed cel-
lular and physiological consequences of induced stress on the
hippocampus and other related brain regions.

In the hippocampus specifically, it has been shown that
chronic stress results in the selective atrophy of the apical
dendrites of CA3 cells but not CA3 basal dendrites (151–155).
In contrast, elevated chronic stress in the face of multiple
stressors results in additional atrophy of the apical den-
drites of CA1 cells yet not CA1 basal dendrites (156, 157). On
the basis of these findings, researchers have proposed that
CA3 apical dendrites are the most susceptible hippocampal
structure to chronic stress. Yet, stress affects CA1 apical den-
drites only with a more severe experimental stressor than
that needed to affect CA3 apical dendrites (150). Our find-
ings of preferential hits in the molecular layer of lonely indi-
viduals may thus be a marker of elevated stress and relate to
the physiological characterization of loneliness as a trait
coinciding with elevated stress and immune response levels
(5, 8, 158–161).

Building upon this, our concerted analysis framework for
HC and DN subregion variation thus allowed us to relate the
potential effects of chronic stress on neocortical partners in
the DN. For example, in mode 1 we observed four hits in the
molecular layer with coincident hits in midline DN subre-
gions such as the dmPFC, PCC, and RSC. The collection of
parallel findings of divergences between the stress-suscepti-
ble molecular layer in the allocortex and specific midline
cortical subregions might therefore reflect the effects of
stress on the higher associative cortex.

Indeed, previous studies have shown that the effects of
chronic stress on the hippocampus percolate into interaction
partners with known axonal connections, such as target
areas in the mPFC (28, 81, 82, 162, 163). For example, in one
study where rats were submitted to 4 wk of chronic stress,
they were found to have a deficit in hippocampal-PFC synap-
tic strength compared with control animals (162). It was also
found that the stressed rats had lower PFC volume and
poorer performance on working memory and behavioral
flexibility tasks—activities that are thought to depend on
mPFC activity (162). Another more recent study has demon-
strated that among squirrel monkeys with bouts of prepuber-
tal social isolation, there was an association between
functional hyperconnectivity in PFC-subcortical circuits
(e.g., dmPFC, vmPFC, OFC; amygdala, ventral striatum, HC)
with reduced anxiety-like behavior in later adulthood. In
line with these previous experiments, our analytical strategy
in the UK Biobank population allowed us to identify con-
comitant stress-related divergences in the molecular layer of
the hippocampus and divergences in the mPFC, PCC, and
RSC of the human DN.
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It is well known that chronic stress causes measurable
neural consequences for the hippocampus in different ani-
mal species (164–166). Yet, the impact of social isolation and
chronic stress on the hippocampus has repeatedly been
argued to be reversible in a matter of a few weeks with social
rehabilitation or reintroduction to an enriched environment
(33, 34, 167, 168). In a similar vein, in the higher association
cortex the effects of chronic stress on PFC dendritic mor-
phology in rats and functional connectivity in humans have
been shown to be reversible after stressful experiences (169–
172). In light of this past literature, there is likely to be elastic-
ity to the effects of social isolation and perhaps the stress-
related volumetric divergences that we uncovered in the hip-
pocampus and its neocortical interaction partners. Indeed,
social rehabilitation by returning to the usual social environ-
ment may remold the examined allocortical-neocortical
brain circuits.
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