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a b s t r a c t 

Conscientiousness, and related constructs impulsivity and self-control, have been related to structural and func- 
tional properties of regions in the prefrontal cortex (PFC) and anterior insula. Network-based conceptions of brain 
function suggest that these regions belong to a single large-scale network, labeled the salience/ventral attention 
network (SVAN). The current study tested associations between conscientiousness and resting-state functional 
connectivity in this network using two community samples ( N’s = 244 and 239) and data from the Human Con- 
nectome Project ( N = 1000). Individualized parcellation was used to improve functional localization accuracy 
and facilitate replication. Functional connectivity was measured using an index of network efficiency, a graph 
theoretical measure quantifying the capacity for parallel information transfer within a network. Efficiency of a set 
of parcels in the SVAN was significantly associated with conscientiousness in all samples. Findings are consistent 
with a theory of conscientiousness as a function of variation in neural networks underlying effective prioritization 
of goals. 
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Within the Five Factor Model of personality, conscientiousness de-
cribes the shared variance among traits reflecting tendencies to fol-
ow rules and prioritize non-immediate goals ( DeYoung, 2015 ). Indi-
iduals scoring high in conscientiousness are inclined toward fastidi-
usness, hard work, future planning, and are skilled at self-regulating
nd avoiding impulsivity. Conscientiousness predicts various influential
ife outcomes, including health-promoting behaviors, longevity, quality
f familial and intergenerational relationships, academic success, work-
lace performance, and career success ( Ozer and Benet-Martinez, 2006 ;
oberts et al., 2014 ). In predicting career and academic outcomes, it

s second only to intelligence ( Wilmot and Ones, 2019 ; Higgins et al.,
007 ). Further, conscientiousness represents the opposite pole of the
imension of psychopathology known as disinhibition, which is associ-
ted with externalizing problems such as attention deficit/hyperactivity
isorder (ADHD) and substance use disorders ( Widiger et al., 2019 ).
espite the clear importance of conscientiousness for human life, rel-
tively little is established regarding its underlying neural substrate
 DeYoung et al., 2021 ). 
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Based on the existing research on neural correlates of conscientious-
ess and impulsivity, Allen and DeYoung (2017) theorized that con-
cientiousness is, in part, a function of a particular broad neural net-
ork that has been identified in large studies of functional connectiv-

ty ( Schaefer et al., 2018 ; Uddin et al., 2019 ; Yeo et al., 2011 ). This
etwork includes core neuroanatomical regions, the anterior insula and
orsal anterior cingulate cortex (dACC), and has been studied under the
abels of “salience, ” “ventral attention, ” and “cingulo-opercular ” net-
orks ( Dosenbach et al., 2007 ; Fox et al., 2006 ; Seeley et al., 2007 ;
ddin et al., 2019 ). Here we refer to it as the salience/ventral attention
etwork (SVAN). Considering the known functional properties of these
etworks, Rueter et al. (2018) suggested that, as a whole, the SVAN
ight be considered a goal priority network, responsible for prioritizing

oals effectively given situational affordances and directing attention
way from distractions and toward goal-relevant stimuli. In addition to
nterior insula and dACC, the SVAN includes nodes in lateral PFC, in-
luding dorsolateral PFC, inferior parietal cortex (operculum) and tem-
oroparietal junction (TPJ) ( Yeo et al., 2011 ; Uddin et al., 2019 ). 
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Rueter et al. (2018) attempted to perform the first direct test of the
ypothesis that functional connectivity within the SVAN is positively
ssociated with conscientiousness. However, limitations in their meth-
ds rendered it unclear to what extent their findings would generalize
o other samples and how accurately they captured variance associated
ith the SVAN specifically. They used networks derived from indepen-
ent components analysis (ICA) that did not align perfectly with the
orders of the SVAN found in standard atlases. Additionally, ICA solu-
ions are unique to the sample in which the ICA was conducted, which
mpedes replication. In the present research, we rely on the atlases of
eo et al. (2011) and Schaefer et al. (2018) to define the SVAN. This
llowed us to test the SVAN hypothesis and to reproducibly assess the
ame functional neuroanatomy across multiple samples. 

A major challenge when testing hypotheses regarding individual dif-
erences in networks from standard atlases is that these networks are not
n the same spatial locations for everyone, relative to anatomical land-
arks ( Chong et al., 2017 ; Gordon et al., 2017 ; Kong et al., 2018 ). Thus,

f one overlays a standard network atlas on each individual’s structurally
ligned data, the boundaries will be poorly estimated for everyone. To
etter estimate regional boundaries, those boundaries must be adjusted
or each subject. To accomplish that adjustment, we employed a rel-
tively new technique to accomplish the individualization of network
ocations based on an iterative Bayesian process known as group prior
ndividualized parcellation (GPIP; Chong et al. 2017 ). In GPIP (and sim-
lar procedures, e.g., Kong et al. 2021 ), one begins with the boundaries
f a standard atlas of distributed networks or smaller contiguous parcels.
hen, patterns of covariance in fMRI data for each subject are used to
djust the boundaries of the atlas to optimize them to that subject’s
nique functional connectivity pattern. Thus, all networks and parcels
re present in each subject and retain their group label across subjects,
ut their size, shape, and location are individualized. 

Individualized parcellation inherently produces greater within-
arcel covariance, and this seems to be a good marker of true func-
ional coherence. Compared to non-individualized atlases, individual-
zed parcellations correspond better to regions of task-related activation,
hich conform more closely to functional organization than to anatom-

cal location ( Chong et al., 2017 ). It also improves prediction of a wide
ange of individual differences ( Anderson et al., 2021 ; Kong et al., 2021 ;
etton et al., 2022 ). Coupled with the fact that individual parcels from
tandard atlases can easily be compared across subjects and samples,
hese findings suggest that individualized parcellation should become
tandard practice in neuroimaging research on individual differences
 DeYoung et al., 2022 ). 

We tested the theorized association of conscientiousness with con-
ectivity in the SVAN, using this approach in the original sample studied
y Rueter et al. (2018) as well as two additional independent samples,
ncluding data from the Human Connectome Project (HCP). We used
n atlas by Schaefer et al. (2018) with 400 parcels which aligns very
losely with the canonical networks identified by Yeo et al. (2011) . Our
ypothesis was that functional connectivity among parcels in the SVAN
ould be positively associated with conscientiousness. We quantified

unctional connectivity using a measure of network efficiency that re-
ects the capacity for parallel information transfer within a network and
hat has been identified as a reliable metric for characterizing functional
etwork integration ( Bullmore and Sporns, 2012 ; Deuker et al., 2009 ;
iang et al., 2021 ). To avoid assuming that every parcel in the network
ust be equally important to conscientiousness, we also examined sub-

ets of parcels within the SVAN and its subnetworks. 

. Methods 

.1. Sample 1 

.1.1. Participants 

A total of 306 right-handed participants completed a single resting-
tate fMRI session as part of a larger study. Participants were recruited
2 
hrough online advertisements and fliers posted in public areas in the
etro region around Minneapolis and St. Paul, Minnesota. Exclusion

riteria included fMRI contraindications, a diagnosis of neurological or
evere psychiatric conditions, or substantial behavioral dysfunction at-
ributable to drug or alcohol use. Following recruitment, additional par-
icipants were excluded due to incomplete or poor quality fMRI data,
ncomplete behavioral data, poor FreeSurfer surface alignment, and ex-
essive head movement during the scan, as identified through multiple
ata preprocessing pipelines applied in subsequent analyses. A total of
44 subjects were retained (121 females) ranging from 20 to 40 years
ld ( M = 25.9, SD = 4.7). Protocols used in this study were approved by
he University of Minnesota Twin Cities institutional review board, and
ll participants provided written informed consent. 

.1.2. Personality measures 

Participants in the present study completed two personality ques-
ionnaires, the Big Five Aspect Scales (BFAS; DeYoung et al. 2007 ) and
he Big Five Inventory (BFI; John et al. 2008 ). The BFAS comprises 100
tems on a 5-point Likert scale ranging from 1 ( strongly disagree ) to 5
 strongly agree ). The questionnaire measures two lower-order aspects for
ach of the Big Five, with 10 items per aspect. These aspect scores can be
veraged to create 20-item domain level Big Five scores. The BFI consists
f a total of 44 items measuring domain level Big Five factors on a 5-
oint Likert scale ranging from 1 ( strongly disagree ) to 5 ( strongly agree ).
n addition to self-report measures, peer-report measures were obtained
y providing participants with 3 packets with instructions to have both
uestionnaires completed by individuals who knew the participant well.
t least one peer report was available for 182 participants, and multiple
eer-reports for a given subject were averaged to create a single peer-
eport score, when applicable. Scale scores for Conscientiousness across
he BFAS and BFI were averaged to create a composite variable, and self
nd peer-report measures were averaged when applicable. 

.1.3. Intelligence 

All participants completed a subset of the Wechsler Adult Intelli-
ence Scale – Fourth Edition (WAIS-IV; Wechsler 2008 ), the Block De-
ign, Matrix Reasoning, Vocabulary, and Similarities tests. Although the
resent study selected these tests from the full WAIS-IV, these four tests
re identical to those used in the shorter alternative, the Wechsler Ab-
reviated Scale of Intelligence (WASI), and provide reliable estimates of
ull-scale IQ ( Wechsler, 2011 ). 

.1.4. fMRI data acquisition and preprocessing 

fMRI data were acquired using a 3T Siemens Trio Scanner at the
enter for Magnetic Resonance Research at the University of Minnesota
win Cities. High-resolution T1-weighted MPRAGE images with the fol-

owing parameters were acquired for anatomical surface registration for
ach participant: voxel dimensions = 1 × 1 × 1 mm 

3 ; repetition time
TR) = 1.9 s; echo time (TE) = 0.29 ms; flip angle = 9°. Functional
cho-planar images were acquired with the following parameters: 35
oronal slices; TR = 2 s; TE = 28 ms; flip angle = 80°; voxel dimen-
ions = 3.5 × 3.5 × 3.5 mm. 

Results included in this study come from preprocessing performed
sing fMRIPrep version 20.2.1 ( Esteban et al., 2018 ). Details of the
ull fMRIPrep analysis are reported in the supplementary material. In
hort, T1-weighted images were processed through the recon-all func-
ion from Freesurfer v6.0.1, and were also nonlinearly spatially normal-
zed to MNI152NLin6Asym space using ANTs v2.1.0. Resting-state scans
ere corrected for field-map distortions, rigidly coregistered to T1 na-

ive space, motion corrected, and also normalized to standard space.
CA-AROMA was used to generate a non-aggressively denoised variant
f the data. Anatomical CompCor was run and the top five principal
omponents of both CSF and white matter were retained. Preprocessed
unctional data in T1 native space were used for subsequent analyses,
nd were visually inspected after coregistration to ensure high-quality
ata was included. Participants exhibiting a relative mean framewise
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isplacement greater than 0.5 mm, a mean standardized derivative of
MS variance over voxels (DVARS) greater than 1.5, or any single oc-
urrence of a coordinate displacement greater than 2.75 mm were ex-
luded from subsequent analyses to avoid biased effects in associations
ith measures of functional connectivity ( Power et al., 2012 , 2014 ). 

.2. Sample 2 

.2.1. Participants 

A total of 260 participants were recruited through postings through-
ut the University of New Mexico, nearby high schools, and various pro-
essional STEM businesses from communities surrounding Albuquerque,
ew Mexico. Participants were excluded on the basis of neurological and
sychological disorders, fMRI contraindications, incomplete behavioral
ata, incidental fMRI findings, poor FreeSurfer surface registration, and
xcessive head motion identified through data preprocessing. A total of
39 participants were retained for the present study (117 females) rang-
ng from 16 to 38 years old ( M = 22 , SD = 3.9 ) . All participants pro-
ided written informed consent, and all procedures in this study were
pproved by the University of New Mexico institutional review board. 

.2.2. Personality measures 

All participants included in the present study completed one of two
ersonality questionnaires: the BFAS, or the NEO Five-Factor Inventory
FFI). The NEO-FFI represents a subset of the full NEO Personality In-
entory, Revised (NEO PI-R; Costa and McCrae 1992 ), consisting of 12
tems per factor. Scale scores were calculated as item averages, using
 five-point Likert scale ranging from 0 ( strongly disagree ) to 4 ( strongly

gree ). A total of 59 participants completed the NEO-FFI, and 180 partic-
pants completed the BFAS. To account for differences in scale means,
cores were centered by subtracting the sample mean of their respec-
ive scale. The present study utilized Conscientiousness scores from all
articipants. 

.2.3. Intelligence 

All participants were administered the set of four tasks from the
ASI ( Wechsler, 2011 ). Full-scale IQ was estimated from performance

n the Vocabulary, Similarities, Matrix Reasoning, and Block Design
ubtests. 

.2.4. fMRI data acquisition and preprocessing 

Using a 3T Siemens Prisma scanner, resting-state functional echo-
lanar images were acquired with the following parameters: 32 coro-
al slices; TR = 275 ms; TE = 30 ms; flip angle = 34°; multiband ac-
eleration factor = 8; voxel dimensions = 3.5 × 3.5 × 3.5 mm, pixel
andwidth = 1736 Hz. High-resolution T1-weighted MPRAGE images
ere acquired for anatomical surface registration through a 5 echo se-
uence with the following parameters: TR = 25.3 s; TE = 1.64 ms,
.5 ms, 5.36 ms, 7.22 ms, 9.08 ms; flip angle = 7°; voxel dimen-
ions = 1 × 1 × 1 mm 

3 . Results included in this study come from prepro-
essing performed using fMRIPrep version 20.2.1 using the same speci-
cations described for Sample 1. 

.3. Sample 3 

.3.1. Participants 

A total of 1000 participants (533 females) were selected from the
U-Minn Consortium of the Human Connectome Project ( Van Essen

t al., 2012 ). Participants were initially excluded on the basis of a history
f severe psychiatric, neurological, or medical disorders. Among the par-
icipants of the 1200 young adult sample, additional participants were
xcluded due to missing personality and intelligence task data, and miss-
ng resting-state fMRI scan data. Participants’ ages ranged from 22 to 37
ears old ( M = 28.7 , SD = 3.7). All participants provided informed con-
ent, and all study protocols were approved by the Institutional Review
oard of Washington University in St. Louis. Details of the informed
onsent procedure are provided by Van Essen et al. (2013) . 
3 
.3.2. Personality measures 

Participants completed the NEO-FFI to assess trait Conscientious-
ess. Scale scores were assessed using a five-point Likert scale ranging
rom 0 ( strongly disagree ) to 4 ( strongly agree ). 

.3.3. Intelligence 

Intelligence was assessed as a composite of performance measures
rom a set of three tests from the NIH Toolbox ( Heaton et al., 2014 )
nd Penn Computerized Neurocognitive Battery ( Moore et al., 2015 ).
erformance metrics on the Matrix Reasoning, Picture Vocabulary, and
ist Sorting tasks were averaged to create an estimate of intelligence for
nalyses. 

.3.4. fMRI data acquisition and preprocessing 

fMRI data were acquired using a customized 3T Siemens Skyra scan-
er for all participants at Washington University in St. Louis. The present
tudy used a single left-to-right phase encoded resting-state scan ac-
uired using the following parameters: 72 axial slices; TR = 0.4 s;
E = 33 ms; flip angle = 52°; multiband acceleration factor = 8; voxel
imensions = 2 × 2 × 2 mm 

3 ; pixel bandwidth = 2290 Hz. Addi-
ionally, high-resolution T1-weighted MPRAGE structural images were
cquired for anatomical surface registration with the following pa-
ameters: TR = 24 s; TE = 2.14 ms; flip angle = 8°; voxel dimen-
ions = 0.7 × 0.7 × 0.7 mm 

3 . Resting-state scans were preprocessed
sing the HCP minimal preprocessing pipeline and motion artifacts were
emoved using ICA-FIX ( Burgess et al., 2016 ). Relative mean framewise
isplacement was also computed to be included as a covariate in subse-
uent analyses. Features of the HCP minimal preprocessing pipeline are
escribed in greater detail in previous literature ( Glasser et al., 2013 ;
gurbil et al., 2013 ). 

.4. Group prior individualized parcellation 

Functional connectivity networks were identified using an individu-
lized cortical parcellation approach. For participants in all three sam-
les, ICA-denoised resting-state fMRI scans in subject-native space were
rst resampled to a common cortical surface mesh ( Dale et al., 1999 ),
nd the BOLD timeseries at each vertex was normalized to zero mean
nd unit variance. The resulting subject surface data were then initial-
zed using a pre-defined group atlas with 400 functionally distinct re-
ions ( Schaefer et al., 2018 ) mapped to the 17-network atlas defined
y Yeo et al. (2011) . This 400 parcel atlas was used to balance the
radeoff between identifying broad patterns of functional connectivity
orresponding to the networks defined by Yeo et al. (2011) while also
dentifying smaller-resolution functional regions that may be informa-
ive in identifying individual differences in functional connectivity. A
ayesian algorithm was applied to iteratively adjust parcel boundaries
ccording to each participant’s unique patterns of functional connectiv-
ty ( Chong et al., 2017 ; Setton et al., 2023 ). In order to produce stable
odifications of parcel boundaries, this algorithm utilized 20 iterations

o maximize within-parcel homogeneity and ensure that all participants
ad no more than one vertex changing its parcel label on the final iter-
tion. Through this process, each participant acquired a unique modifi-
ation of a standard group-level atlas after the final iteration such that
he boundaries of the parcels of the initial atlas optimally reflected each
ndividual’s patterns of resting-state functional connectivity. 

For the present analyses, the full SVAN was defined by 51 functional
arcels, 34 of which correspond to subnetwork A, and 17 of which corre-
pond to subnetwork B, in the 17-network atlas of Yeo et al. (2011) . The
ull SVAN was included in the present analyses to account for the poten-
ial role of connections between parcels of subnetworks A and B, rather
han focusing only connections within each subnetwork separately. (The
wo subnetworks fractionate the larger network labeled “ventral atten-
ion network ” in Yeo et al. 2011 7-network atlas.) The parcels of the
VAN are illustrated using the group-level Schaefer atlas ( Schaefer et al.,
018 ) in Fig. 1 . Analyses of the extent of the spatial modification of the
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Fig. 1. Parcels in the salience/ventral attention network (SVAN). 
Colors correspond to 2 of the 17 functional networks described by 
Yeo et al. (2011) . Purple = SVAN subnetwork A, Pink = SVAN subnet- 
work B. 
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VAN and its subnetworks through GPIP are described in the supple-
entary material. 

.5. Orthogonal minimum spanning trees and functional connectivity 

For each sample, parcel-average timeseries were correlated and
isher r-to-z transformed to create a 400 × 400 functional connectivity
atrix for each participant. Using these matrices, smaller sub-matrices
ere constructed for correlations among parcels in the SVAN, subnet-
ork A, and subnetwork B. To quantify the connectivity properties of

ach matrix, a graph-theory approach was used, in which each parcel is
onsidered a node in the graph and each correlation represents a poten-
ial connection, or edge, between nodes. 

We applied a data-driven topological threshold to the individual
unctional connectivity matrices using orthogonal minimum spanning
rees (OMSTs; Dimitriadis et al. 2017 ). The OMSTs approach was used to
creen out many low correlations and avoid modeling noise that may be
resent in functional connectivity measures, while also avoiding the im-
osition of arbitrary graph thresholds that incur methodological biases.
MSTs rely on an iterative procedure to filter functional connectivity
etworks to optimize the trade-off between global efficiency within the
etwork and the wiring cost, where global efficiency describes the av-
rage inverse shortest path length within the network, and wiring cost
efers to the ratio of the sum of the weights of the filtered graph to that
f the unfiltered graph ( Rubinov and Sporns, 2010 ). In this manner, con-
ections between participants’ OMSTs using an identical set of nodes can
ary substantially on account of unique individuals’ patterns of brain
rganization, while still ensuring a fully connected graph, a property
enerally exhibited by unfiltered weighted graphs. We emphasize the
mportance of utilizing a fully connected graph for each network of in-
erest to reflect that these parcels demonstrate functional interactions
ithin canonical networks described by the group-level cortical atlas.
espite the application of a degree of sparsity to the functional con-
ectivity matrices using OMSTs, this thresholding procedure has been
emonstrated to produce (1) graphs characterized by similar sensitiv-
ty to perturbations in connection strength and density compared to
nfiltered graphs ( Tewarie et al., 2015 ), (2) higher performance com-
ared to conventionally filtered graphs in tests of subject-specific graph
ecognition ( Dimitriadis et al., 2017 ), and (3) greater test-retest reli-
bility across scans compared to graphs with conventional thresholds
 Jiang et al., 2021 ). 

We computed a measure of global-cost efficiency of OMSTs-filtered
raphs as an index of network-wide functional connectivity. In the
resent analyses, global-cost efficiency reflects coherence among sets
f parcels as a function of correlations between average parcel time-
eries in the filtered graph. The choice of this particular graph theoret-
4 
cal measure is informed by research demonstrating its reliability as a
easure of functional network integration ( Bullmore and Sporns, 2012 ;
euker et al., 2009 ; Jiang et al., 2021 ). In the present research, “global ”
oes not refer to the set of nodes spanning the entire cortex, but rather to
he full set of nodes in any network or subnetwork of interest. To avoid
onfusion, we will hereafter refer to this metric as “network efficiency. ”

.6. Analysis 

We used two main analytic strategies. First, we examined as-
ociations between conscientiousness and network efficiency among
ll parcels within each network of interest. Second, we applied a
ermutation-based feature selection approach to identify potentially rel-
vant subsets of parcels within each network. This approach was used
o address the possibility that only a subset of parcels within the SVAN
ight be important for conscientiousness, and to mitigate the poten-

ial influence of intraindividual noise in pairwise functional connectiv-
ty among many parcels. This approach is inspired by the data-driven,
achine-learning method called Connectome-Based Predictive Model-

ng (CPM; Finn et al. 2015 ). CPM uses cross-validation to identify unique
rain-behavior associations using functional connectivity data and has
een effective in identifying significant and reliable associations across
arge samples ( Rosenberg et al., 2015 ; Wang et al., 2021 ). However,
ince CPM is primarily a data-driven procedure, using this method across
ultiple samples introduces the likely possibility of identifying different

onfigurations of edges in each, which is not suitable for the goal of iden-
ifying replicable groups of parcels. To take advantage of CPM’s capacity
o summarize broad patterns of functional connectivity, we used a vari-
tion of the feature selection criteria described in the CPM procedure to
dentify a single set of parcels whose associations with conscientiousness
ould be tested across multiple samples. 

For tests of associations between conscientiousness and subsets of
he networks of interest (i.e., SVAN and its subnetworks A and B), we
andomly divided participants in each sample into ten equal sized sub-
roups. Using nine of the ten subgroups, partial correlations were com-
uted between each edge in OMSTs-filtered functional connectivity ma-
rices and conscientiousness, controlling for the effects of head motion
sing relative mean framewise displacement. This procedure was re-
eated ten times, holding out each subgroup once. In each iteration, a
inarized matrix of the graph was created denoting edges positively as-
ociated with conscientiousness at p < .05 (uncorrected). These p -values
emained uncorrected because we were using them merely as a con-
enient threshold for identifying parcels to include in larger networks
f interest, and they were not used as inferential statistics to test our
ain hypothesis. Across the ten iterations, these matrices were com-

ined to represent the frequency of iterations in which edges demon-
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Fig. 2. Workflow of method for identifying functional ensembles in each sample. Panel A: GPIP was used to individualize the locations and boundaries of parcels 
from the 400 parcel atlas by Schaefer et al. (2018) . The procedure in panel B was used to identify a computationally feasible number of parcels for inclusion in 
network analyses and was conducted in all samples, but no parcels in Sample 3 met the selection criteria. Network efficiency from combinations of parcels meeting 
the selection criteria in Samples 1 and 2 identified in B was tested independently in Sample 3, as illustrated in panel C . 
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trated above-threshold associations with conscientiousness. The maxi-
um value of each row in this matrix was used to signify the robustness

o sampling variability of associations between conscientiousness and
he connectivity of each parcel. For each sample, parcels were selected
or further analyses if they contained an edge significantly positively
ssociated with conscientiousness in at least 8 iterations. The division
f each sample into subgroups was designed to reduce the influence of
ampling variability by identifying parcels that had above-threshold ass-
ociations with conscientiousness across many subsamples, in line with
onventional thresholds used in CPM ( Shen et al., 2017 ). 

Although we had initially planned to identify candidate parcels in
very sample, we ultimately decided to leave Sample 3 (HCP) out of
ny procedure for selecting parcels of interest so that we could hold
ut a large and completely independent sample in which to replicate
ur findings. Reserving the largest sample for replication allowed for
he most rigorous test of the robustness of our findings. We therefore
ombined parcels that met the aforementioned criteria from the smaller
amples 1 and 2 to create the pool of candidate parcels for each net-
ork. This yielded 14 parcels for the SVAN, 5 parcels in subnetwork A,
nd 9 parcels in subnetwork B. Associations between conscientiousness
nd efficiency of parcels in this pool were then tested independently in
ample 3. This procedure ensured that we could replicate findings from
amples 1 and 2 in a much larger sample, with complete statistical in-
ependence from any prior analyses in that sample. This workflow is
llustrated in Fig. 2 . 

We focused our parcel selection on edges with positive associa-
ions with conscientiousness to match the direction of our hypothesis.
his procedure has the potential to engender misleading conclusions in
ubsequent tests of association with network efficiency because, even
f some collections of parcels in the SVAN have positive associations
ith conscientiousness, others might show negative associations, which
ould be contrary to our hypothesis. To account for this possibility, we
5 
epeated our selection procedure using parcels exhibiting at least one
dge with a negative association with conscientiousness in at least 8
terations (uncorrected p < .05) in Samples 1 or 2. Results from this
rocedure are reported in the supplementary material. 

Following parcel selection, we computed the set of combinations of
elected parcels containing a minimum of 3 parcels each to run through
he OMSTs procedure, because a network of 3 nodes is the smallest net-
ork for which more than one spanning tree exists (i.e., the smallest

ully-connected network with no loops and with potential variability in
he configuration of edges). Although these combinations of parcels are
reated as “networks ” in the graph-theory sense, we use the term “func-
ional ensembles ” to describe them from here on, to avoid confusion
ith our use of “network ” to refer to established large-scale brain net-
orks such as the SVAN and its two subnetworks. The largest functional

nsemble for a given network of interest was defined as containing all
arcels selected in the permutation procedure described above (hence
4 parcels in the SVAN, 5 parcels in subnetwork A, and 9 parcels in
ubnetwork B). We computed measures of network efficiency for the
argest functional ensemble and for all smaller functional ensembles
ithin each set. 

Multiple linear regression models were computed predicting consci-
ntiousness from the efficiency of each network or functional ensemble
f interest, controlling for age, sex, intelligence, head motion, and ef-
ciency of two other major neural networks (computed using OMSTs-
ltered matrices in the same manner as for the SVAN), the frontoparietal
ontrol network (FPCN) and default network (DN) ( Yeo et al., 2011 ).
etwork efficiency values for FPCN and DN were included as covariates

or two reasons: First, these networks, like the SVAN, have extensive
odes in lateral prefrontal cortex and insula, and they have additional
odes adjacent to the SVAN throughout the brain. Given their involve-
ent in complex cognitive functions such as working memory (FPCN)

nd self-generated thought (DN), one can imagine plausible functional
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Table 1 

Descriptive statistics for personality measures. 

M SD Skew Kurtosis 

Sample 1 ( N = 244) 
Self-report BFAS Conscientiousness 3.39 .61 − 0.20 − 0.29 
Self-report BFI Conscientiousness 3.75 .63 − 0.50 .10 
Peer-report BFAS Conscientiousness 3.42 .55 − 0.17 − 0.25 
Peer-report BFI Conscientiousness 3.66 .45 − 0.57 − 0.12 
Composite Conscientiousness 3.55 .50 − 0.36 − 0.07 

Sample 2 ( N = 239) 
BFAS Conscientiousness 3.49 .51 − 0.23 − 0.63 
NEO-FFI Conscientiousness 2.76 .57 − 0.36 .26 

Sample 3 ( N = 1000) 
NEO-FFI Conscientiousness 2.87 .49 − 0.36 .19 

Note. BFAS = Big Five Aspect Scales, BFI = Big Five Inventory, NEO- 
FFI = NEO Five Factor Inventory. 
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rguments linking them to conscientiousness that would not apply to
ther networks such as visual or somatomotor. Controlling for their ef-
ciency allows a test of discriminant validity, helping to ensure that any
etected associations with conscientiousness are specific to the SVAN,
er our hypothesis. Second, a general tendency exists in resting-state
MRI for all brain regions and networks to exhibit positive correlations in
heir activity over time, which may be substantive or artifactual or some
ombination of both ( Rueter et al., 2018 ). Controlling for the variance in
wo other large networks removes this general, possibly artifactual vari-
nce that the SVAN shares with other parts of the brain. Together, the
VAN, FPCN, and DN account for 191 of the 400 parcels in the Schaefer
tlas. 

Intelligence was incorporated into analyses to account for both its
odest negative association with conscientiousness and its potentially

onfounding associations with patterns of functional connectivity in the
etworks relevant to our hypotheses ( Cole et al., 2012 ; Finn et al., 2015 ).
eaving intelligence out of the analyses did not produce appreciable
ifferences in our results. 

All coefficients denoting the association between conscientiousness
nd efficiency of sets of parcels within the SVAN were corrected for Type
 error ( 𝛼 = 0.05) using positive false discovery rate (pFDR; Storey 2002 ,
003 ). To evaluate the significance of each functional ensemble while
ccounting for the unique distributions of effect sizes in each sample,
e utilized the algorithm described by Storey and Tibshirani (2003) to

stimate a q -value for each functional ensemble, the pFDR analog of the
 -value. 

Finally, to investigate discriminant validity thoroughly, we checked
hether networks and functional ensembles were consistently associ-
ted with any of the other Big Five traits. These analyses were ex-
loratory, but we hypothesized that efficiency of the SVAN and its var-
ous subcomponents would not be consistently associated with traits
ther than conscientiousness. 

.7. Data/Code availability 

Individual data from Sample 1 are not able to be shared through
pen access because participants agreed during the informed consent
rocedure that their data would not be shared beyond the research
eam. Data from Sample 3 are available from the Human Connectome
roject’s website: https://www.humanconnectome.org/study/hcp-
oung-adult . A sample-average functional connectivity ma-
rix from Sample 1 using individualized parcels, as well as
ndividualized functional connectivity matrices from Sample
 are available in an Open Science Framework repository:
ttps://osf.io/zju2s/?view_only = 8521207b2af540b9bab3b04033744f3
his repository also contains scripts used in group-level analy-
es. Code used to produce individualized parcels is available at
ttps://neuroimageusc.github.io/GPIP 

. Results 

Descriptive statistics for personality questionnaire measures for all
amples are reported in Table 1 . Distributions of the personality scores
re illustrated in the supplementary material. 

Standardized regression coefficients from models predicting consci-
ntiousness from efficiency of the SVAN, its subnetworks, and their
argest functional ensembles are presented in Table 2 . All parcels iden-
ified in the permutation selection procedure that were used to create
ombinations of functional ensembles for each network of interest are
eported in the supplementary material. 

.1. SVAN 

The efficiency of the full SVAN, containing all parcels in both subnet-
orks, was positively associated with conscientiousness in Sample 3, but
ot Samples 1 and 2. The largest functional ensemble of the SVAN was
6 
haracterized by a total of 14 parcels located in regions of the left pari-
tal operculum and dorsolateral PFC, right superior frontal gyrus and
entrolateral PFC, and bilateral dACC and insula ( Fig. 3 ). Although the
ndividualization of these parcels makes the correspondence between
heir boundaries and standard anatomical boundaries inexact, we re-
ort the anatomical names associated with each of the parcels from the
roup-level atlas to facilitate discussion of the approximate brain regions
ssociated with these networks. 

These names, indices from Schaefer et al. (2018) parcellation
cheme (available at https://github.com/ThomasYeoLab/CBIG/blob/
aster/stable _ projects/brain _ parcellation/Schaefer2018 _ LocalGlobal/ 
arcellations/MNI/Centroid _ coordinates/Schaefer2018 _ 400Parcels _ 
7Networks _ order _ FSLMNI152 _ 1 mm .Centroid_RAS.csv ), and centroid
oordinates for all parcels in the largest functional ensemble of the
VAN are reported in Table 3 . 

The efficiency of this functional ensemble was significantly asso-
iated with conscientiousness across all samples. Additionally, consci-
ntiousness was positively associated with all combinations of smaller
unctional ensembles in Sample 2. Similar associations were found in
amples 1 and 3, where conscientiousness was positively associated with
5,616 smaller functional ensembles (96% of all combinations) in Sam-
le 1 and 11,552 smaller functional ensembles (71% of all combina-
ions) in Sample 3, after controlling pFDR ( q < 0.05). 

.1.1. Subnetwork A 

In tests of association with subnetwork A of the SVAN ( Table 2 ),
onscientiousness was negatively associated with the efficiency among
ll parcels in the full subnetwork in Sample 2. However, in Samples
 and 2, conscientiousness was positively associated with the largest
unctional ensemble, containing a set of 5 parcels within the left parietal
perculum, and the bilateral medial frontal and parietal cortex. Among
he combinations of smaller functional ensembles derived from these
 parcels, conscientiousness was associated with all of these functional
nsembles in Sample 1 after pFDR correction for multiple comparisons,
ut these associations were not replicated in Samples 2 and 3. 

.1.2. Subnetwork B 

In tests of association with subnetwork B of the SVAN ( Table 2 ),
onscientiousness was significantly associated with the efficiency of all
arcels in Samples 1 and 2, but not in Sample 3. Additionally, consci-
ntiousness was significantly associated with the largest functional en-
emble in Samples 1 and 2. This functional ensemble contained 9 parcels
ispersed throughout the left and right dorsolateral PFC, insula, and dor-
omedial PFC. Among the combinations of smaller functional ensembles
reated using these parcels, conscientiousness was positively associated
ith 229 functional ensembles (49% of all combinations) in Sample 1
nd 164 functional ensembles (35% of all combinations) in Sample 2,
fter controlling pFDR. 

https://www.humanconnectome.org/study/hcp-young-adult
https://osf.io/zju2s/?view_only=8521207b2af540b9bab3b04033744f39
https://neuroimageusc.github.io/GPIP
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Centroid_coordinates/Schaefer2018_400Parcels_17Networks_order_FSLMNI152_
http://.Centroid_RAS.csv
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Table 2 

Standardized regression coefficients in models predicting conscientiousness from efficiency of whole networks and largest functional ensembles of the 
SVAN. 

Model 
Sample 1 
( N = 244) 

Sample 2 
( N = 239) 

Sample 3 
( N = 1000) 

All Parcels 
Largest Functional 
Ensemble All Parcels 

Largest Functional 
Ensemble All Parcels 

Largest Functional 
Ensemble 

Conscientiousness 
SVAN − 0.01 .24 ∗∗ − 0.01 .33 ∗∗ .12 ∗ .12 ∗ 

age .17 .19 .07 .06 .04 .03 
Sex (male) − 0.45 − 0.41 − 0.55 − 0.48 − 0.17 − 0.16 

intelligence − 0.14 − 0.13 .00 − 0.01 − 0.10 − 0.10 

head motion − 0.06 − 0.10 − 0.04 − 0.05 − 0.06 − 0.06 
DN .00 − 0.08 .15 .04 − 0.14 − 0.13 
FPCN .04 − 0.09 − 0.09 − 0.28 − 0.03 − 0.04 

Conscientiousness 
Subnetwork A .01 .24 ∗∗ − 0.13 ∗ .09 ∗ .08 .03 
age .17 .17 .07 .07 .04 .04 
Sex (male) − 0.45 − 0.42 − 0.55 − 0.54 − 0.17 − 0.16 

intelligence − 0.14 − 0.12 − 0.01 .00 − 0.10 − 0.10 

head motion − 0.06 − 0.10 − 0.04 − 0.04 − 0.06 − 0.06 
DN − 0.01 − 0.08 .18 .13 − 0.12 − 0.09 
FPCN .03 − 0.06 − 0.01 − 0.15 − 0.01 .01 

Conscientiousness 
Subnetwork B .21 ∗ .20 ∗ .21 ∗ .19 ∗ .09 .04 
Age .18 .18 .07 .07 .04 .04 
Sex (male) − 0.41 − 0.40 − 0.52 − 0.52 − 0.16 − 0.16 

Intelligence − 0.14 − 0.14 − 0.01 − 0.01 − 0.10 − 0.10 

Head motion − 0.10 − 0.10 − 0.05 − 0.06 − 0.05 − 0.06 
DN − 0.07 − 0.07 .06 .07 − 0.12 − 0.09 
FPCN − 0.08 − 0.05 − 0.19 − 0.17 − 0.03 .00 

Note. 
∗ q < 0.05, 
∗∗ q < 0.01 controlling for multiple comparisons across all tested functional ensembles (16,278 SVAN combinations, 16 Subnetwork A combinations, 

and 466 Subnetwork B combinations). Significant estimates at uncorrected p < .05 for each regression are shown in bold. SVAN = salience/ventral 
attention network. Largest functional ensemble refers to the set of all parcels identified by the permutation selection procedure. 

Table 3 

MNI152 1 mm RAS coordinates for centroids of parcels mapped to the largest 
functional ensemble of the SVAN. 

Parcel Index Parcel Name R A S 

86 LH_SalVentAttnA_ParOper_1 − 55 − 32 22 
87 LH_SalVentAttnA_ParOper_2 − 58 − 44 27 
98 LH_SalVentAttnA_FrMed_1 − 7 0 57 
99 LH_SalVentAttnA_FrMed_2 − 5 9 48 
101 LH_SalVentAttnB_PFCl_1 − 38 49 11 
102 LH_SalVentAttnB_PFCl_2 − 29 43 30 
105 LH_SalVentAttnB_Ins_2 − 33 25 − 1 
288 RH_SalVentAttnA_PrC_1 51 3 41 
296 RH_SalVentAttnA_FrMed_1 7 2 43 
303 RH_SalVentAttnA_FrMed_4 16 7 69 
305 RH_SalVentAttnB_PFClv_1 49 40 5 
309 RH_SalVentAttnB_Ins_1 34 21 − 8 
311 RH_SalVentAttnB_PFCmp_1 8 35 25 
312 RH_SalVentAttnB_PFCmp_2 7 19 35 

Note. LH = left hemisphere, RH = right hemisphere. 
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.2. Discriminant validity 

To assess the degree to which the association of conscientious-
ess with network efficiency is specific to the SVAN, we repeated the
ermutation-selection approach using the parcels of the FPCN and the
N. The largest functional ensemble of the FPCN contained 7 parcels

n the bilateral dorsolateral PFC and right anterior cingulate cortex that
et the criteria from the permutation-selection procedure in Samples 1

nd 2. For this network, efficiency values were computed from OMSTs-
ltered graphs in the same manner as for the SVAN, using all parcels first
nd then all combinations of functional ensembles using the 7 parcels.
e fit regression models predicting conscientiousness from efficiency of
7 
he full network, as well as efficiency of all combinations of functional
nsembles from these 7 parcels, controlling for the effects of age, sex,
ntelligence, head motion, and efficiency of all parcels in the SVAN and
N. 

This process was then repeated for the DN. The largest functional en-
emble of the DN contained 43 parcels which met the criteria from the
ermutation-selection procedure in Samples 1 and 2. Considering the
normous number of possible combinations of parcels that could be cal-
ulated as functional ensembles from this large set of parcels, we limited
ur analyses to the efficiency values for the OMSTs-filtered graphs of the
ull network, the largest functional ensemble, and all combinations of
2, 41, and 40 parcels, in order to limit combinatorial explosion. Al-
hough this subset of combinations does not sample all combinations of
unctional ensembles of the DN, our approach yielded a number of tests
oughly comparable to the number conducted for the SVAN, making it
 reasonable comparison. Age, sex, intelligence, head motion and the
fficiency of all parcels in the SVAN and FPCN were included as predic-
ors. Parcels in the FPCN and DN used in the combinations of functional
nsembles are reported in the supplementary material. 

Associations between conscientiousness and the full networks and
argest functional ensembles of the FPCN and DN are reported in Table 4 .

Across all samples, conscientiousness was not significantly associ-
ted with the efficiency among all parcels of the FPCN. In Samples 1 and
, conscientiousness was associated with efficiency among the parcels
f the largest functional ensemble after controlling pFDR. Additionally,
onscientiousness was significantly associated with the efficiency of 64
unctional ensembles (64% of combinations) in Sample 1 after control-
ing pFDR, and the efficiency of all functional ensembles in Sample 2
fter controlling pFDR. However, none of these associations were repli-
ated in Sample 3, which is the crucial test because Sample 3 was not
nvolved in selecting the parcels in the first place. In tests of DN effi-
iency, conscientiousness was not significantly associated with the effi-
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Fig. 3. Scatterplots of significant associations be- 
tween efficiency of the largest functional ensem- 
ble of the SVAN with conscientiousness. A = Sam- 
ple 1; B = Sample 2; C = Sample 3. Associations 
control for the effects of age, sex, intelligence, and 
efficiency of the frontoparietal control and default 
networks. The removal of the outlier on efficiency 
in Sample 1 altered the effect only slightly, and 
it remained significant ( 𝛽 = 0.29, q < 0.01). The 
effects also remained significant after the removal 
of high leverage points, identified as points with 
a leverage value greater than 2 times the number 
of parameters in the model divided by the sam- 
ple size (Sample 1: 𝛽 = 0.35, q < 0.01; Sample 2: 
𝛽 = 0.32, q < 0.01; Sample 3: 𝛽 = 0.14, q < 0.01). 
D = parcels in the largest functional ensemble of the 
SVAN. SVAN = salience/ventral attention network. 
Purple = subnetwork A. Pink = subnetwork B. 

Table 4 

Standardized regression coefficients of models predicting conscientiousness from efficiency of whole networks and largest functional ensembles in FPCN 

and DN. 

Model 
Sample 1 
( N = 244) 

Sample 2 
( N = 239) 

Sample 3 
( N = 1000) 

All Parcels 
Largest Functional 
Ensemble All Parcels 

Largest Functional 
Ensemble All Parcels 

Largest Functional 
Ensemble 

Conscientiousness 
FPCN .04 .20 ∗ − 0.09 .24 ∗∗ − 0.03 .04 
Age .17 .17 .07 .05 .04 .04 
Sex (male) − 0.45 − 0.44 − 0.55 − 0.49 − 0.17 − 0.17 

Intelligence − 0.14 − 0.14 .00 .01 − 0.10 − 0.10 

Head motion − 0.06 − 0.08 − 0.04 − 0.05 − 0.06 − 0.06 
SVAN − 0.01 − 0.06 − 0.01 − 0.17 .12 .09 
DN .00 − 0.07 .15 .04 − 0.14 − 0.17 

Conscientiousness 
DN .00 .12 .15 .39 ∗ − 0.14 − 0.09 
Age .17 .17 .07 .07 .04 .04 
Sex (male) − 0.45 − 0.42 − 0.55 − 0.53 − 0.17 − 0.16 

Intelligence − 0.14 − 0.14 .00 − 0.01 − 0.10 − 0.10 

Head motion − 0.06 − 0.06 − 0.04 − 0.05 − 0.06 − 0.06 
SVAN − 0.01 − 0.07 − 0.01 − 0.11 .12 .09 
FPCN .04 .00 − 0.09 − 0.20 − 0.03 − 0.05 

Note. Associations with FPCN efficiency control for whole DN efficiency, and vice versa. Both regressions also control for whole SVAN efficiency. Estimates 
significant at uncorrected p < .05 shown in bold. 

∗ q < 0.05, 
∗∗ q < 0.01 controlling across all combinations of functional ensembles (36 FPCN combinations and 13,288 DN combinations). FPCN = frontoparietal 

control network. DN = default network. Largest functional ensemble refers to the set of all parcels identified by the permutation selection procedure. 

8 
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Table 5 

Standardized regression coefficients of models predicting SVAN efficiency 
from the Big Five dimensions. 

SVAN C E A N O/I 

Sample 1 ( N = 244) 
All Parcels − 0.02 .03 − 0.04 − 0.05 ∗ .02 
Largest Functional Ensemble .05 .01 − 0.03 − 0.07 ∗ .00 

Sample 2 ( N = 239) 
All Parcels .00 − 0.02 − 0.01 .01 .00 
Largest Functional Ensemble .01 − 0.05 .00 .02 .02 

Sample 3 ( N = 1000) 
All Parcels .04 ∗ .02 − 0.02 .03 .01 
Largest Functional Ensemble .04 ∗ .03 − 0.02 .02 .02 

Note. Associations controlling for the age, sex, intelligence, head motion, 
and efficiency of the frontoparietal control and default networks. Estimates 
significant at uncorrected p < .05 shown in bold. SVAN = salience/ventral 
attention network. C = Conscientiousness, E = Extraversion, A = Agreeable- 
ness, N = Neuroticism, O/I = Openness/Intellect. Largest functional ensem- 
ble refers to the set of all parcels identified by the permutation selection 
procedure. 

∗ q < 0.05 controlling across all 16,278 combinations of functional ensem- 
bles. 
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iency among all parcels of the DN in any sample after controlling pFDR.
onscientiousness was significantly associated with the efficiency of all

unctional ensembles in Sample 2 after controlling pFDR, but these as-
ociations were not replicated in Samples 1 and 3. The lack of replica-
le associations between conscientiousness and efficiency in the DN and
PCN provides evidence of discriminant validity, demonstrating that as-
ociations with the SVAN are probably not attributable to factors like
etwork size or general characteristics of brain network integration. 

To further assess discriminant validity, we conducted additional ex-
loratory analyses to determine whether these associations with SVAN
ere exclusive to conscientiousness relative to the other Big Five dimen-

ions. For each sample, we repeated our analyses including all Big Five
raits as simultaneous predictors in models predicting efficiency of the
ull SVAN and combinations of functional ensembles. Standardized re-
ression coefficients for each of the Big Five predicting efficiency of all
arcels in the SVAN and the largest functional ensemble are reported in
able 5 . 

Among associations between traits other than conscientiousness, ef-
ciency values of the full SVAN and its largest functional ensemble in
ample 1 were significantly negatively associated with neuroticism af-
er controlling pFDR, but this association was not replicated in Samples
 and 3. Interestingly, conscientiousness was not significantly associ-
ted with efficiency of the full SVAN or its largest functional ensemble
n Samples 1 and 2 after controlling for the remaining Big Five and
ontrolling pFDR, but conscientiousness in Sample 3 remained signifi-
antly positively associated with efficiency in the full SVAN and 14,330
unctional ensembles (88% of all combinations), including the largest
unctional ensemble, after controlling for the remaining Big Five and
ontrolling pFDR. Although this association between conscientiousness
nd efficiency of the SVAN was statistically significant only in Sample
, the magnitude of the effect in Sample 1 is similar to that of Sample 3,
uggesting the possibility that these results in Sample 1 may be indica-
ive of Type II error as a result of lower statistical power in a smaller
ample. Regardless, conscientiousness was the only trait among the Big
ive to consistently exhibit positive associations with efficiency of the
argest functional ensemble of the SVAN across samples, providing fur-
her evidence of discriminant validity. 

. Discussion 

This research presents evidence of an association of conscientious-
ess with the functional connectivity of a set of parcels within the SVAN
n three samples. These parcels, located in regions of medial and lateral
9 
FC, insula, and parietal operculum, are widely dispersed throughout
any nodes in both subnetworks of the SVAN identified by the 17-
etwork atlas of Yeo et al. (2011) . Considering the nature of our par-
el selection procedure in constructing subsets of potentially relevant
arcels, the magnitude of these associations may be overestimated in
he first two samples. However, because the much larger third sample
HCP) did not contribute any parcels to this procedure, the significant
ffect in HCP is noteworthy as a fully independent and unbiased repli-
ation. 

Additionally, in our supplementary material, we report results of
nalyses parallel to our main analyses but using negative correlations
f conscientiousness with individual connections between parcels to
dentify sets of parcels in which to calculate network efficiency. This
s an especially stringent test of our hypothesis. Regardless of the ex-
stence of a set of parcels in which efficiency is robustly positively as-
ociated with conscientiousness, if there were another set of parcels in
hich efficiency was negatively associated with conscientiousness, this
ould be contrary to our hypothesis. However, no set of parcels had ef-
ciency that was consistently negatively associated with conscientious-
ess across samples. 

The effects we report are small, but this should not be surprising
iven that participants were merely resting rather than being required
o engage actively in some task involving goal prioritization. In person-
lity neuroscience generally, we should expect the functional properties
f networks to be more strongly associated with relevant traits when
hose networks are actively carrying out the psychological functions
orresponding to the trait in question. The magnitude of the associa-
ion between conscientiousness and the largest functional ensemble of
he SVAN in Sample 3 is consistent with research on the range of effect
izes for associations between behavioral individual differences and rest-
ng brain function, making the large size of Sample 3 important for our
bility to test this effect ( Marek et al., 2022 ). 

Associations between conscientiousness and the SVAN are consis-
ent with previous research describing the network’s functional roles. In
ts initial conception, the ventral attention network was largely right-
ateralized and included the TPJ and regions of ventral PFC. It has been
escribed as responsible for monitoring and redirecting attentional pro-
esses as a response to new and potentially salient cues from the envi-
onment ( Corbetta and Shulman, 2002 ; Fox et al., 2006 ; Vossel et al.,
014 ). The salience network, typically described as consisting of the
orsomedial PFC, dACC, insula, and select regions of the dorsolateral
FC, has been attributed a similar function to the ventral attention
etwork but with greater emphasis on the integration of information
rom a variety of sources to discern the relevance of incoming stimuli
o one’s motivation and goals ( Menon and Uddin, 2010 ; Seeley et al.,
007 ; Uddin, 2015 ). Although previous research has sometimes charac-
erized the ventral attention and salience networks as independent func-
ional systems ( Power et al., 2011 ; Cole et al., 2013 ; Baker et al., 2014 ),
heir anatomical and functional overlap has led to a growing consensus
hat they refer to a single large network with identifiable subnetworks
 Uddin et al., 2019 ). Note, however, that the two subnetworks identified
n the atlas of Yeo et al. (2011) and analyzed in this study do not corre-
pond neatly to a distinction between the previously described ventral
ttention and salience networks. 

The parcels in which efficiency was consistently associated with con-
cientiousness were spread across both SVAN subnetworks, suggesting
hat conscientious individuals may be characterized by effective inte-
ration of nodes relevant to all functions of the SVAN. This efficiency
ay permit a greater capability to identify and prioritize motivationally

alient information in the context of multiple goals of varying duration,
mportance, and abstraction. These findings also have important impli-
ations in the context of evidence supporting the involvement of the
VAN in modulating the activity of the DN and FPCN ( Bonnelle et al.,
012 ; Kucyi et al., 2017 ; Zhou et al., 2018 ). Through this interpretation,
ur results suggest that individual differences in conscientiousness may
e partially contingent on differences in the adeptness of the SVAN in
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anaging the dynamic tension between these two networks. This par-
icular role of the SVAN coheres well with the notion of goal prioritiza-
ion as coordinating internal representations of various goal states (DN)
ith information in working memory (FPCN) used to monitor progress

oward these goals and direct ongoing action related to them. 
Further, this interpretation is consistent with much of the literature

escribing the functional and structural properties of regions where the
arcels in question are located, particularly the dorsolateral PFC, in-
ula, and dorsomedial PFC. Previous literature has described associa-
ions of functional connectivity among these regions with a variety of
igher-order self-regulatory processes conceptually related to conscien-
iousness ( Cieslik et al., 2013 ; Lynn et al., 2014 ; Taren et al., 2011 ).
everal structural MRI studies have found conscientiousness to be as-
ociated with structural variables such as cortical thickness in regions
f dorsolateral PFC corresponding reasonably well to particular parcels
dentified in the present research ( Bjørnebekk et al., 2013 ; Gao et al.,
021 ; Owens et al., 2019 ). These regions of the dorsolateral PFC may
e particularly responsible for maintaining the representations that reg-
late the pursuit of active goals and suppress distractions arising from
alient information identified through other SVAN regions such as the
nsula ( Dosenbach et al., 2008 ; Rueter et al., 2018 ). Thus, our results
escribe replicable associations of conscientiousness with functional in-
egration in the SVAN in a manner that seems consonant with previous
iterature describing the neural correlates of well-regulated goal pursuit.

Our findings also serve as an important clarification and extension
f findings by Rueter et al. (2018) , supporting the theory that the SVAN
s a key neurological substrate of individual differences in conscien-
iousness. However, our methods allowed us to make a more precise
nd generalizable test of the hypothesis that functional connectivity
n the SVAN is positively associated with conscientiousness. Because
ueter et al. (2018) relied on ICA to identify intrinsic connectivity net-
orks that overlapped with the SVAN more than with other canoni-

al networks, the boundaries of the networks identified by ICA did not
orrespond particularly well to the SVAN’s boundaries. In our supple-
entary materials, we report analyses in which we tried to replicate,

s closely as possible using our parcellation, the spatial extent of ICA
etworks that Rueter et al. (2018) found to be associated with conscien-
iousness. The efficiency of this set of parcels was not replicable in our
ther samples. 

Additionally, to investigate the effect of using individualized parcels
n our study, we repeated our analyses using measures of network effi-
iency of the SVAN derived from non-individualized parcels of the stan-
ard group-level atlas across all three samples. Consistent with previous
esearch on the effects of individualized parcellation, we found that the
ajority of associations of conscientiousness with network efficiency of

he SVAN, its subnetworks, and combinations of functional ensembles
ere greater when using individualized parcels than when using the

tandard atlas. These results are described in detail in the supplemen-
ary materials. 

The present research incorporates many practices that have been
hown in recent work to improve test-retest reliability among resting-
tate fMRI findings, including the use of individualized cortical par-
ellation ( Chong et al., 2017 ), the Schaefer atlas ( Schaefer et al.,
018 ), weighted graphs determined by product-moment correlations,
nd graph filtering through OMSTs ( Luppi et al., 2021 ; Luppi and Sta-
atakis, 2021 ). Specifically, using OMSTs to assess functional connec-

ivity allowed us to capture meaningful individual variability in func-
ional topology among parcels by modeling associations among them in
 manner that maximizes global-cost efficiency, consequently bypassing
oth the need to impose an arbitrary threshold and the retention of ex-
ess noise in graph theoretical measures. By simultaneously modeling ef-
cient information transfer and sparsity using OMSTs, our approach ef-

ectively characterizes brain connectivity as high-performing and adapt-
ble small-world networks with modular and hierarchical properties,
hich corresponds well to what is known about actual brain function
 Bassett and Bullmore, 2006 ; Mengistu et al., 2016 ). 
10 
.1. Limitations 

Despite the advantages of our methods, there are limitations to con-
ider regarding the current research. Although we identified a set of
arcels for which associations with conscientiousness were replicable
n a large, independent sample, we also saw some variability across
amples in associations between conscientiousness and the efficiency
f various networks and functional ensembles. This variability could be
elated to variability in participant characteristics, scanning parameters,
nd/or personality measures. For example, measurement quality might
elp explain why Sample 1, with multiple self- and peer-report measures
f personality, demonstrated stronger associations between neural vari-
bles and conscientiousness than Sample 3, which had only a single,
elatively brief, self-report measure of personality. 

Additionally, the permutation-based parcel selection procedure used
o identify subnetworks for each of the canonical networks of interest
sed a cutoff of parcels appearing in 80% of iterations. This cutoff was
hosen to permit a suitably sized pool of candidate parcels while also
ffording manageable computational intensity during the calculation of
unctional ensemble combinations. This somewhat arbitrary threshold
efined the size of the largest functional ensemble for each network, and
 different threshold might have yielded different results. As a robust-
ess check, we repeated our main analyses using a cutoff of 70% and
ound that our results did not change substantively. Additionally, a cut-
ff of 90% produced similar results for the entire SVAN, but yielded too
ew candidate parcels ( < 3) for subnetworks A and B. Our analyses were
lso restricted to investigating the efficiency of the SVAN, FPCN, and
N. It is possible that other, less obviously relevant networks could be

elated to conscientiousness. It is also possible that connectivity between
etworks is relevant, whereas we limited our investigation to connectiv-
ty within networks. Future research could address these possibilities. 

. Conclusion 

Using resting-state fMRI, in conjunction with canonical networks of
ndividualized parcels and graph theoretical measures, we identified a
et of regions in the SVAN, including nodes in the anterior insula, dorso-
ateral PFC, parietal operculum, and dACC, in which network efficiency
as a replicable neural correlate of conscientiousness across three sam-
les. These results are consistent with a theory that the ability to pri-
ritize goals effectively underlies conscientiousness and relies primarily
n the SVAN ( Allen and DeYoung, 2017 ; Rueter et al., 2018 ). Our find-
ngs emphasize the importance of several existing and emerging prac-
ices in personality neuroscience ( DeYoung et al., 2022 ), including the
se of theory-driven analyses and large sample sizes, and individual-
zed parcellation to capture variability in the cortical location of canon-
cal neural networks. Although this is basic research, it may eventually
ontribute to the development of novel interventions for mental health
roblems involving impulsivity and disinhibition, the dimension of psy-
hopathology corresponding to maladaptive low conscientiousness. 

ata/Code availability 

Individual data from Sample 1 are not able to be shared through
pen access because participants agreed during the informed consent
rocedure that their data would not be shared beyond the research
eam. Data from Sample 3 are available from the Human Connectome
roject’s website: https://www.humanconnectome.org/study/hcp-
oung-adult . A sample-average functional connectivity matrix
rom Sample 1 using individualized parcels, as well as individual-
zed functional connectivity matrices from Sample 2 are available
n an Open Science Framework repository: https://osf.io/zju2s/
view_only = 8521207b2af540b9bab3b04033744f39 . This repos-
tory also contains scripts used in group-level analyses. Code
sed to produce individualized parcels is available at https://
euroimageusc.github.io/GPIP 

https://www.humanconnectome.org/study/hcp-young-adult
https://osf.io/zju2s/?view_only=8521207b2af540b9bab3b04033744f39
https://neuroimageusc.github.io/GPIP
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