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A B S T R A C T   

Nucleus Basalis of Meynert (NbM), a crucial source of cholinergic projection to the entorhinal cortex (EC) and 
hippocampus (HC), has shown sensitivity to neurofibrillary degeneration in the early stages of Alzheimer’s 
Disease. Using deformation-based morphometry (DBM) on up-sampled MRI scans from 1447 Alzheimer’s Disease 
Neuroimaging Initiative participants, we aimed to quantify NbM degeneration along the disease trajectory. 
Results from cross-sectional analysis revealed significant differences of NbM volume between cognitively normal 
and early mild cognitive impairment cohorts, confirming recent studies suggesting that NbM degeneration 
happens before degeneration in the EC or HC. Longitudinal linear mixed-effect models were then used to 
compare trajectories of volume change after realigning all participants into a common timeline based on their 
cognitive decline. Results indicated the earliest deviations in NbM volumes from the cognitively healthy tra
jectory, challenging the prevailing idea that Alzheimer’s originates in the EC. Converging evidence from cross- 
sectional and longitudinal models suggest that the NbM may be a focal target of early AD progression, which is 
often obscured by normal age-related decline.   

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder with a dual 
proteinopathy as key markers of its pathology: accumulation of amyloid- 
beta in the form of plaques and hyperphosphorylated-tau in the form of 
neurofibrillary tangles (NFTs). These changes in the brain lead to irre
versible loss of neurons and an eventual decline in cognitive and func
tional abilities as clinical symptoms of the disease manifest (McKhann 
et al. 2011; Jack et al. 2018). 

AD has a complex temporal evolution and the precise sequence of the 
spread of neurodegeneration across brain regions, especially in the 
initial stages, remains unclear. Widely accepted models suggest that 
Alzheimer’s degeneration starts in the entorhinal cortices and then 
spreads through the temporoparietal cortex (Braak, Braak, and Bohl, 
1993). This is supported by a hierarchical system that stages AD ac
cording to tau aggregation (Braak and Braak, 1991), where the accu
mulation of NFT first appears in entorhinal cortices and hippocampus. 

However, this theory has been challenged by histological (Mesulam 
et al. 2004; Sassin et al. 2000; Geula and Mesulam, 1996; Schliebs and 
Arendt, 2011) and structural imaging studies (Grothe, Heinsen, and 
Teipel, 2012; 2013; Xia et al. 2023), focusing on the early pathological 
changes to cholinergic neurons of the basal forebrain. 

The main source of cholinergic projections to the cerebral cortex is 
the magnocellular neurons of the Nucleus basalis of Meynert (NbM), the 
largest cluster of cholinergic cells that constitute the basal forebrain. 
Postmortem studies have shown high densities of NFTs in NbM in early 
and presymptomatic stages of the disease (Mesulam et al. 2004). The 
NbM is located within a continuous band of structures including the 
amygdala, hippocampus, and entorhinal cortex which are all at high risk 
of degeneration due to AD pathology. This anatomical positioning of 
NbM has been speculated to be the main reason for its vulnerability to 
NFTs (Mesulam, 2013). 

Longitudinal studies focusing on basal forebrain and specifically 
NbM have also reported disproportionate degeneration when compared 
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to normally aging older adults (Grothe, Heinsen, and Teipel, 2013; 
Schmitz et al. 2018). Schmitz and Spreng (Schmitz et al., 2016) showed 
that early longitudinal grey matter loss in the region of the NbM sur
passed that in the entorhinal cortex in amyloid-positive cognitively 
normal older adults. They also discovered that baseline NbM volumes 
predicted rates of structural degeneration in the entorhinal cortex. In 
another work the degeneration of the cholinergic projection system was 
further theorized to be upstream of entorhinal and neocortical degen
eration (Fernández-Cabello et al. 2020). 

However, the precise delineation of NbM is difficult due to limited 
spatial resolution and contrast in MR images. The NbM lacks strict 
boundaries with adjacent cell groups and its small size poses a challenge 
for defining this region on common 1 mm3 isotropic T1w scans. To 
overcome this challenge, we increased the resolution of our MRI scans, 
before performing a deformation-based morphometry (DBM) analysis. 
DBM, unlike voxel-based morphometry (VBM), does not depend on an 
automated segmentation of the MR data into gray matter, white matter, 
and CSF; instead it can use image contrast directly as an explicit rep
resentation of these distributions (Ashburner and Friston, 2000; Chung 
et al. 2001). The improvements in nonlinear image registration algo
rithms allow for matching the images locally based on similarities in 
contrast and intensities, making DBM more sensitive than VBM for 
subtle differences and more resilient to erroneous tissue classification. 

In this study, we precisely quantify volume loss in these structures 
(NbM, EC, HC) across Alzheimer’s disease trajectory. We look at 
cognitively normal controls (CN), including those that are amyloid- 
negative (CN-) and those that are amyloid-positive (CN+), as well as 
amyloid-positive early mild cognitive impairment (eMCI), amyloid- 
positive late mild cognitive impairment (lMCI) and amyloid-positive 
patients with dementia due to clinically probable AD. In addition to 
examining these groups cross sectionally, we also map all subjects into a 
common disease timeline to compare longitudinal differences between 
their continuous volume trajectories. We also verify these results by 
comparing these trajectories in only the CN+ and eMCI groups to ensure 
the later disease groups are not driving the early findings. 

2. Materials and methods 

2.1. Dataset 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com
bined to measure the progression of mild cognitive impairment (MCI) 
and early AD. 

All ADNI subjects provided informed consent and the protocol was 
approved by the institution review board at all sites. In this work, we 
selected subjects from ADNI for which T1 MRI data was available at the 
baseline visit. To better focus on AD pathology, and to follow those most 
likely on the Alzheimer’s trajectory, amyloid positivity was also applied 
as a key inclusion criterion using both amyloid PET scan and CSF 
biomarker, with a cut-off of 0.79 SUVR (using composite reference re
gion, corresponding to the ADNI standard whole cerebellum-based 
florbetapir positivity threshold of 1.11) for PET data (Landau and Jag
ust, 2015) or a CSF pTau/Aß markers of more than 0.028 for positivity 
(Hansson et al. 2018; Schindler et al. 2018). From the 1447 ADNI1, 
ADNIGO, and ADNI2 subjects available, 677 subjects (with 1982 scans) 
met these criteria. In ADNI, individuals with MCI are classified as “early 
MCI” or “late MCI” based on the WMS-R Logical Memory II Story A 
score. The specific cutoff scores are as follows (out of a maximum score 
of 25): Early MCI (ADNI-EMCI) is assigned for a score of 9–11 for 16 or 
more years of education; a score of 5–9 for 8–15 years of education; or a 

score of 3–6 for 0–7 years of education. Late MCI (ADNI-LMCI) is 
assigned for a score of ≤8 for 16 or more years of education; a score of 
≤4 for 8–15 years of education; or a score of ≤2 for 0–7 years of edu
cation. In addition, we selected the 219 cognitively normal controls that 
were amyloid negative (CN-) for the z-scoring normalization process 
described below. 

2.1.1. MRI super-sampling 
To address the issue of the very small size of the NbM, we decreased 

the voxel-size of native MRI scans using the upsampling method intro
duced by Manjón et al. (Manjón et al. 2010) (See Supplementary Fig. 1). 
In MR imaging, the common model assumes that low-resolution voxels 
can be well modeled as the average of the corresponding high-resolution 
voxel values plus some acquisition noise. To construct the 
high-resolution image, the method proposed by Manjón et al. enforces a 
structure-preserving constraint as opposed to imposing an arbitrary 
smoothness constraint: the down-sampled version of the reconstructed 
image should be the same as the noise-free low-resolution image for all 
locations. The super-resolution method is an iterative procedure 
including (1) a patch-based non-local reconstruction step to perform the 
upsampling and (2) a mean correction step to ensure that the recon
structed high-resolution image remains consistent with the original 
low-resolution image. This upsampling method was applied in 3D to all 
T1w MRI scans prior to other pre-processing steps and results were 
checked visually for wrong outcomes. The up-sampled scans were then 
cropped around the medial temporal region to keep the dataset volume 
within a computationally feasible range. 

2.2. MRI Preprocessing 

All up-sampled T1w scans were pre-processed through our standard 
longitudinal pipeline including image denoising (Coupé et al., 2008), 
intensity non-uniformity correction (Sled, Zijdenbos, and Evans, 1998), 
and image intensity normalization into range (0− 100) using histogram 
matching. Each T1w volume was then non-linearly registered to an 
ADNI-based template using ANTs diffeomorphic registration pipeline 
(Avants et al. 2008). The quality of the registrations was visually 
assessed and the six cases (1 eMCI, 3 lMCI and 2 AD) that did not pass 
this quality control were discarded. The image processing pipelines used 
in the present study have been developed and validated for use in 
multi-center and multi-scanner studies of aging and neurodegenerative 
disease populations and have been previously used in such applications, 
providing robust results (Dadar and Collins, 2021; Dadar et al. 2020; 
Morrison et al. 2023). Consequently, our preprocessing step will elimi
nate the effect of scanner variability on our measurements. 

To further assess the effect of magnetic strength on our NbM mea
surements, we ran our processing pipeline on data from 100 individuals 
from ADNI dataset that had T1w scans available from both 1.5 T and 3 T 
scanners that were acquired less than 10 days apart. We assessed the 
consistency of the measured NbM volume using Pearson correlation. The 
1.5 T and 3 T measurements had a significant correlation (R=0.95, 
p<.0001). Supplementary Fig. 2 shows the correlation results. 

2.3. Deformation-Based Morphometry analysis 

DBM characterizes positional differences between each voxel of a 
target image and a standard brain, which then detects morphological 
differences over the entire brain. Here, each up-sampled subject image 
was non-linearly registered to an unbiased average template (Fonov, 
Coupe, et al. 2011), resulting in a deformation field as the output. The 
statistical analyses are then performed on parameters extracted from the 
deformation fields, instead of the registered voxels. In this study, DBM 
analysis was performed using MNI MINC tools. 

The deformation field D was computed for all subject scans such that 
the subject S was mapped to the template T when deformed by D (i.e., D 
(S)). To be able to compare all subjects in the common (template) space, 
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we used the ANTs inverse mapping of D to map the template T to the 
subject S. The Jacobian matrix of the deformation field is defined as 
below: 
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The Jacobian map is then defined as the determinant of the Jacobian 
Matrix at each voxel. According to this map, areas showing Jacobian 
determinant values higher than 1, show larger local volume in the 
subject’s MRI scan relative to the template, while areas of the map with a 
value less than 1 indicate a smaller local volume. 

2.3.1. Atlas-based volumetry 
All Jacobian maps were calculated in the template space, thus 

normalizing for head size. From the atlas published by Zaborszky et al. 
(Zaborszky et al. 2008), we combined both the Ch4 and Ch4p probabi
listic areas to define the NbM region. A threshold of 50% was used to 
define the NbM mask (Wang et al. 2022). For HC and EC regions, atlases 
were created by using the method introduced in (Yushkevich et al. 
2015), which is a software for automatic segmentation of medial tem
poral lobe regions on the average template volume. Again, mean values 
of z-scored Jacobian maps in the left and right HC and EC regions for 
each subject were used (Figure 2B). The mean values of Jacobian maps 
inside the left and right masks were then calculated for each subject. To 
ensure that up-sampling the scans increases the robustness of our mea
surements, the same analysis was repeated for all scans using the orig
inal resolution, without up-sampling the data. 

2.4. Longitudinal analysis 

2.4.1. Subject-specific template 
To better assess the trajectory of anatomical changes over the course 

of the disease, we also incorporated follow-up scans into our analysis. 
Longitudinal image processing aims at reducing within-subject vari
ability by transferring information across time, e.g., enforcing temporal 
smoothness or informing the processing of later time points with results 
from earlier scans. However, these approaches are susceptible to pro
cessing bias that could be due to non-linear registration when using an 
arbitrary reference image such as a general template. Consistently 
treating a single time point, usually baseline, differently from others, for 
instance, to construct an atlas registration or to transfer label maps for 
initialization purposes, can already be sufficient to introduce bias 
(Reuter et al. 2012). 

It is unlikely that bias affects all groups equally, considering that one 
group usually shows only little longitudinal change, while the other 
undergoes significant neurodegeneration. On the other hand, using an 
individual template per subject has been shown to effectively eliminate 
bias (Reuter et al. 2012). The approach which is based on the work done 
by Fonov et al. (Fonov, Evans, et al. 2011) treats all data-points equally 
without prioritizing baseline data over the follow-up scans and has been 
utilized to obtain a more accurate anatomical correspondence between 
time-points. 

To summarize, the objective of the subject-specific template creation 
algorithm is to find the non-linear transformations that minimize the 
anatomical shape differences between all-time points to create the most 
representative average of the subject’s anatomy, where we expect a 1:1 
anatomical correspondence throughout the brain. Processing is achieved 
in two steps. First, all data is processed cross-sectionally to bring each 
volume into stereotaxic space. Second, this data is used to build a 
subject-specific individual template. 

After building the subject-specific template, we calculate the local 

volume change in each data-point compared to the subject-specific 
template, resulting in an unbiased relative volume change based on 
time. To make sure that longitudinal change for each subject is com
parable with the other subjects, the measured change is scaled using the 
difference between each subject-specific template and a general ADNI 
template (see supplementary Fig. 4). The ADNI template used for this 
work is made up of 150 ADNI subjects (50 cognitively normal, 50 MCI, 
and 50 dementia due to AD). The results were then corrected for age and 
sex using the healthy amyloid-negative subjects as the control group. 

2.4.2. Subject-specific time-shift 
When patients get their diagnosis, whether it is early or late MCI or 

clinical AD, it is impossible to determine exactly when the disease 
started. Moreover, not all subjects progress in the same manner and rate. 
However, clinical measurements such as cognitive scores can - to some 
extent - estimate where in the disease trajectory each patient stands, 
with a time scale dependent on the clinical or cognitive measures used. 
To address the issue of estimating the time of disease onset, we inves
tigated a new technique that leverages cognitive test scores to estimate a 
latent timeline that models the subject-specific disease progression. 

Here we used the work of Kühnel et al. (Kühnel et al. 2021) to model 
the progression of Alzheimer’s disease using cognitive scores at different 
time points. In this work, a nonlinear mixed-effects model aligns patients 
based on their predicted disease progression along a continuous latent 
disease timeline. More specifically, the Alzheimer’s Disease Assessment 
Scale-cognitive subscale (ADAS-cog-13) and the Mini-Mental State Ex
amination (MMSE) were used simultaneously to fit an exponential curve 
to the longitudinal data, calculating time-shifts for each subject. Unlike 
the work in Kühnel et al., where the diagnostic group of each subject was 
added to the mixed-effect model resulting in a group-based difference 
for the latent timeline, we did not include this label in our analysis, 
making the model blind to any previous classification and hence, purely 
data driven. 

Figure 1 depicts the results of MMSE and ADAS13 scores plotted 
against the original follow-up time (left column), and the subject-level 
estimated time-shifts (right column). Longitudinal data from 219 
cognitively normal amyloid negative subjects (CN-) was included with 
the 677 amyloid positive subjects before running the analyses to ensure 
a common time scale across all subjects for later analysis. 

Additionally, and for the sake of comparison, we repeated the exact 
same steps as Kühnel’s included the group-based difference and found 
that our results were comparable. Assuming the group-based time-shift 
for cognitively normal subjects is zero, the average time-shift based on 
MMSE and ADAS13 for the eMCI group was 36.8 months (about 3 years) 
from a latent time origin. For lMCI, this shift was 87.5 months (about 7 
and a half years) and patients with clinically diagnosed AD had 128.8 
months (about 10 and a half years) of shift in time. 

2.4.3. Statistical analysis 
With both subject-specific estimated time and longitudinal local 

change in the volume, we plotted the trajectories of three regions of 
interest (HC, EC, and NbM) across the disease progression timeline. 
Longitudinal modeling of atrophy was performed using a linear mixed 
effect model to account for both within-subject variability of volumes 
over multiple scans and between subject changes. All statistical analyses 
were done using the lme4 package (Bates et al. 2015). 

The estimated disease time (EDT) was used as the fixed effect 
(including an intercept and both a linear and quadratic compound). A 
cubic time effect was also tested but did not improve the model. After 
evaluation with an Akaike criterion, the final model used the following 
formulas: 

DBM ∼ 1 + EDT + EDT2 + Amyloid + Amyloid : EDT + (1 + EDT|ID)

(1) 

In this equation, Amyloid is a categorical variable showing amyloid 
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positivity vs. negativity in participants. This compares the time-based 
trajectory of all amyloid positive participants with those of control 
normal group (CN-). This model enables us to find, for each structure, 
the point in time at which the volumetric trajectory of the amyloid- 
positive group significantly deviates from that of the normal aging 
group. 

In a second step, to study the effect of APOE4 status and sex on the 
trajectories, these variables were added to the model as fixed effects. The 
model was then calculated as follows: 

DBM ∼ 1 + EDT + EDT2 + Sex : EDT + APOE4 + Amyloid + Amyloid

: EDT + (1 + EDT|ID)

(2) 

The intercept and slope for each subject were considered as random 
effects. The term Amyloid is a categorical variable showing amyloid 
positivity vs. negativity (same as Eq. 1). The initial correction for sex 
aims to remove its main effect, and the subsequent interaction term (Sex: 
EDT) here focuses on potential time-dependent variations that are 
unique to each sex. 

To further compare the z-scored longitudinal volume trajectories of 
the NbM, EC and HC in amyloid positive subjects only, we tested another 
linear mixed-effect model: 

DBM ∼ 1 + EDT + EDT2 + structure + structure : EDT + (1 + EDT|ID)

(3)  

Here the term structure is a categorical variable encoding the ROI under 
study (NbM, EC or HC) whereas the term DBM indicates the actual DBM 
values of these ROIs. If significant, the structure term will show a height 
difference in the trajectories. Likewise, the structure:EDT will evaluate a 
potential slope difference between ROIs. Unlike Eq. (1), this model fo
cuses only on amyloid positive subjects and is applied to early-stage 
subjects (CN+ and eMCI). 

2.5. Data availability 

All data used in the current study were obtained from the ADNI 
database (available at https://adni.loni.usc.edu). The data that support 
the findings of this study are available from the corresponding author, 
upon request. 

3. Results 

3.1. Demographics 

Table 1 shows the demographics of the 5 groups included in this 

Fig. 1. Predicted patient staging using MMSE and ADAS-Cog-13 scores. The horizontal axis is the time scale predicted by the model that is adjusted for subject- 
level differences in disease stage, thus bringing all subjects onto a common timeline. 
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Table 1 
Baseline demographics.   

Total CN- CNþ EMCI LMCI AD 

(N¼896) (N¼219) (N¼117) (N¼131) (N¼242) (N¼187)  

Age, years 73.6±7.3 73.59±5.8 75.6±5.9 72.9±6.8 73.5±7.1 73.9±8.0 
Sex (%Male) 56.7% 56.47% 41.6% 63.9% 62.4% 56.1% 
Education 16.01±2.8 16.13±2.8 16.46±2.6 15.8±2.8 16.1±3.0 15.4 ± 2.9 
APOE4 status 42%(0),44%(1),13%(2) 82%(0),17%(1) 0.44%(0),47%(1),8%(2) 25%(0),59%(1),16%(2) 27%(0),55%(1),17%(2) 21%(0),53%(1),25(2)%  

MMSE 27.03±2.78 29±1.27 29.17±1.1 28.07±1.57 26.94±1.82 23.16±1.97 
CDR-SB 1.7±1.9 0.034±0.12 0.034±0.15 1.52±0.95 1.74±0.93 4.58±1.58 
ADAS-cog-13 17.6±10.2 8.8 ± 4.3 10.1±4.0 14.4±5.4 20.5±6.4 30.5±7.9  

Fig. 2. Mean z-scored Jacobian value. (A) Scores for average NbM (left), HC (middle) and EC (right) (***: p-value<5e-06; **: p-value<0.005; *: p-value<0.05; NS: 
Not significant). (B) the regions of interest of the NbM (left), hippocampus (middle) and the entorhinal cortex (right). 
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study. There was a significant age difference between amyloid-positive 
normal controls and subjects with early-stage mild cognitive impair
ment (p-value<0.001, t-value=4.25, df=246). The age difference was 
not significant for other groups. 

3.2. Atlas-based DBM analysis of baseline data 

Figure 2A shows the distribution of z-scored values of mean DBM 
Jacobian at baseline for NbM, EC, and HC regions, for CN-, CN+, eMCI, 
lMCI, and patients with clinically probable AD. After Bonferroni 
correction for multiple comparisons, a significant difference was found 
between CN+ and eMCI groups for left, and more substantial on right 
NbM. Additionally, a significant difference was observed between eMCI 
and lMCI groups, where the difference was more substantial in the left 
NbM. 

The z-scored EC and HC volumes did not show a statistically signif
icant difference between CN+ and EMCI groups; However, results from 
eMCI and lMCI differ significantly in these regions for both the left and 
right hemispheres (All p-values are reported in Supplementary Table 1). 
We also observed statistically significant differences between lMCI and 
AD in NbM, EC, and HC (P<0.001). The results are depicted for all 
participants, where left and right ROIs are combined to obtain average 
bilateral measurements. 

The results of atlas based DBM analysis for both high-resolution and 
original low-resolution scans were compared. Results show that while 
both pipelines detect the general trend of NbM atrophy as the disease 
progresses, the high-resolution analysis finds a stronger distinction be
tween disease stages (Supplementary Fig. 3). To quantify this distinc
tion, we used Cohen’s d measurement and compared volume changes in 
early MCI against late MCI in both models. Up-sampled scans showed a 
higher Cohen’s d and t-value, further confirming our assumption (Sup
plementary Table 2). 

3.3. Longitudinal analysis 

The longitudinal data used in this work included 1982 scans from the 
677 amyloid-positive and 219 cognitively normal amyloid-negative 

subjects. On average, each subject had ~3 time-points. For the CN+

group, the average time-points available per subject was 3.27, for eMCI 
this average was 2.8, for lMCI, 3.68 and for subjects with AD dementia, 
the average was 2.3 scans. 

Using the latent time shift (Figure 1) to offset the baseline (and 
following) scans, we were able to plot the changes in three different 
regions of the brain (NbM, EC and HC) across the estimated disease 
progression timeline (see supplementary Fig. 5 (bottom row) and  
Figure 3). Note that for longitudinal analysis, left and right ROIs are 
combined to obtain bilateral measurements. Supplementary Fig. 5 
shows how the estimated time-shift, changes the shape of the plots 
whenever it was used instead of age as a continuous measure of time. 

The results of the statistical analyses are also provided in Table 2, 
where the fitted beta values and statistical significance for Eq. 1 is re
ported. As can be seen from both Figure 3 and Table 2, when looking into 
all longitudinal data, EC shows a steeper decline across the trajectory, 
followed by NbM, and then HC (this can be calculated using the first 
derivative of the Eq. 1 at EDT=0 (early-stage), where the slope equals 
the coefficient of the EDT in the equation). However, our mixed model 
shows a more pronounced difference between the cognitively normal 
amyloid-negative group and combined amyloid-positive groups in NbM 
compared to EC (and HC). In addition, the Amyloid:EDT term shows that 
volume loss over time related to amyloid positivity is greater - both 
numerically and statistically - in the NbM compared to the HC and EC. 
Furthermore, cognitively normal amyloid-negative group and combined 
amyloid-positive groups seem to start differentiating earliest in the HC, 
closely followed by the NbM and then the EC. 

3.3.1. Early-stage longitudinal analyses 
To ensure that the fitted curves in Figure 3 are not driven by the late- 

stage atrophy of the lMCI and AD group, we opted to focus only on the 
CN+ and eMCI ‘early-stage’ subjects, comparing their trajectories to the 
CN- group. Figure 4 shows the age- and sex- corrected z-scores for both 
CN- and the early-stage CN+ and eMCI groups for NbM, EC and HC. This 
time results show a steeper and earlier decline in the early-stage CN+

subjects in NbM atrophy trajectory compared to HC and EC. Addition
ally, no statistically significant differences were observed between 

Fig. 3. Longitudinal age- and sex-corrected zscore volumes for NbM, HC, and EC. (left to right) across the predicted timeline (estimated using Eq. 1). Black lines 
indicate the CN- group and red shows all amyloid-positive subjects from CN+, eMCI, lMCI and AD subjects. 
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normal and abnormal subjects for EC and HC. Age- and sex-normalized 
NbM and HC trajectories for CN- remains flat, while the CN- trajectory 
for EC declines with time. This results in greater volume differences for 
NbM and HC between the CN- group and the CN+ and eMCI groups 
across the disease time spectrum estimated. The results of the statistical 
analyses for the early-stage analysis are also provided in Tables 3 and 4. 
Table 4 shows the effect of EDT, amyloid status, sex:EDT and APOE4 
status on the volume trajectories of NbM, EC and HC when looking at 
early-stage dataset using Eq. 2. We see that EDT is significant for all 
three structures, but that EDT2 is significant only for NbM and EC. In the 
absence of late-stage subjects, the model showed a slightly different fit, 
from whole-data analysis: over time, amyloid positivity results in a 
significantly steeper decline for NbM (p=.0011, t-value = 3.149) and EC 
(p=.0074, t-value = − 2.752) but is only trending for HC (p=.057, t-value 
= 1.904). There was a trend for greater atrophy of the NbM in subjects 
with the APOE-4 allele. 

Table 5 shows the fitted beta values and statistical significance for 
Eq. 3. This time instead of comparing the trajectories of normal and 

abnormal subjects, we opted to compare the abnormal curves of NbM 
with those of HC and EC using Eq. 3. Results show the effect of EDT, 
anatomical structure, and the interaction term (EDT:structure) on the 
longitudinal data. The fitted model shows that the normalized volume 
difference at EDT=0 between the NbM and the HC is significant 
(p=0.0166), and between the NbM and the EC is almost significant 
(p=.055). The slope of the trajectory between NbM is statistically 
steeper than both the EC (p=.015) and the HC (p<.001). 

4. Discussion 

In this work, we were able to quantify the volume changes in NbM, 
EC and HC regions due to Alzheimer’s disease on T1w scans. Our cross- 
sectional results show that while macroscopic changes in EC and HC 
emerge as MCI subjects advance toward the later stages, NbM degen
eration starts earlier, with atrophy apparent in the preliminary stages of 
early MCI. This points to MRI-based measurements of NbM as potential 
biomarkers for early detection of AD and as a marker of disease burden. 

Table 2 
Results for statistical analyses (Eq. 1).  

Fixed effects Nucleus basalis Hippocampus Entorhinal cortex 

Estimate p-value Estimate p-value Estimate p-value 

Intercept  -0.0639 0.159  -0.0598 0. 184767  -0.1446 8.28e-04 *** 
EDT  -0.0128 0.0421 *  -0.0155 0.010896 *  -0.0374 1.62e-11 *** 
EDT2  -0.0011 0.00174 **  -0.0010 0.005968 **  -0.0019 2.19e-08 *** 
Amyloid (positive)  -0.3288 5.38e-10 ***  -0.3599 1.25e-11 ***  -0.2299 5.50e-06 *** 
Amyloid:EDT  -0.0329 1.34e-04 ***  -0.0257 7.42e-04 ***  -0.0188 0.006084 **  

Fig. 4. Early-stage volume change. Longitudinal volume change in NbM, HC, and EC (left to right) across the predicted disease timeline (estimated using Eq. 1). 
For each structure for CN- (black) and the early-stage CN+ and eMCI groups (red). 

Table 3 
Results for statistical analyses (Eq. 1) for early-stage subgroup only.  

Fixed effects Nucleus basalis Hippocampus Entorhinal cortex 

Estimate p-value Estimate p-value Estimate p-value 

Intercept  -0.0457 0.2959  -0.0545 0.2119  -0.1043 0.0071** 
EDT  -0.0027 0.7599  -0.0119 0.06067  -0.0309 3.67e-08*** 
EDT2  -0.00008 0.9060  -0.0005 0.280  -0.0014 0.00113** 
Amyloid (positive)  -0.2434 4.84e-05***  -0.1650 0.0083**  -0.1216 0.028* 
Amyloid:EDT  -0.0220 0.01843 *  -0.0126 0.06702  -0.0103 0.085  
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The findings of the cross-sectional analysis are in line with previous 
studies working on NbM and Basal Forebrain (Fernández-Cabello et al. 
2020). It has been long-established that NbM, the source of cholinergic 
innervation, undergoes severe neurodegeneration in Alzheimer’s dis
ease. In more recent studies, Schmitz et al. (Schmitz et al., 2016) have 
provided evidence that basal forebrain pathology precedes and predicts 
both entorhinal pathology and memory impairment. Our findings 
regarding AD-related atrophy in both EC and HC were consistent with 
previous studies, confirming the neurodegeneration in these regions 
during the mild cognitive impairment stage. 

The outcome of longitudinal analysis confirms the cross-sectional 
finding that NbM undergoes neurodegeneration earlier than regions 
such as EC and HC. Once subjects are realigned in time with a latent 
offset starting point for the disease, we find that the NbM is the earliest 
structure to be affected by neurodegeneration measured by atrophy and 
is the first structure to be associated with early cognitive changes, even 
though the disease time offset was driven by ADAS13 and MMSE, tests 
that are linked more to memory than to attention. It is important to 
consider the very large heterogeneity of disease burden and cognitive 
decline in the Alzheimer’s trajectory. 

In this work we used a new method of sequencing the disease stage in 
a continuous manner, using the clinical symptoms instead of using age 
as the time-based variable. Our results of subject-specific disease time 
analysis are comparable with the original work of Kühnel (Kühnel et al. 
2021) on subjects from the ADNI dataset. In their work, they found ~25 
months of time-shift for subjects with memory concern (we did not 
include this group), ~50 months for eMCI (36.8 months in our work), 
~90 months for lMCI (87.5 months in our work) and ~150 months for 
subjects with dementia (128.8 months in our work). The differences may 
be explained by Kühnel’s use of the CDR score while we used 
ADAS-Cog13 and MMSE to drive the latent time offset as they are more 
sensitive to subtle cognitive changes. This new method enabled us to 
follow the trajectory of the disease progression in macroscopic 
MRI-based measurements, independent of age (as an indirect measure of 
disease progression) or diagnosis group (which provides a discrete 
timeline). 

The result of our work is in line with previous studies on the asso
ciation of hippocampal and entorhinal atrophy with sex differences. 
Two studies on ADNI and MIRIAD determined that atrophy rates were 
faster by 1–1.5% per year in women with aMCI and AD dementia than in 
men (Hua et al. 2010; Ardekani, Convit, and Bachman, 2016). However, 

while we found a sex:EDT effect for HC and EC over and above that 
expected for normal age and sex, we were unable to see the effect of sex 
on NbM atrophy rates. 

To ensure that more pronounced volume changes in the later-stages 
of the disease were not driving the measurements for earlier stages 
through an artefact of model fitting, we defined a new group consisting 
only of cognitively normal amyloid positive subjects and those with 
early MCI, referred to as “early-stage”. We then repeated our statistical 
analyses on this group and compared the longitudinal changes with 
healthy amyloid negative subjects. The results showed that even in the 
early stage of AD, NbM shows a steeper atrophy trajectory compared to 
HC and EC, and this difference becomes more pronounced as the disease 
progresses. 

Our study extends on prior in vivo structural MRI studies demon
strating pronounced degeneration of Nucleus basalis of Meynert in the 
context of Alzheimer’s disease. Although several longitudinal studies 
have focused on basal forebrain and NbM volume loss, these studies 
were mainly conducted over short-time intervals using two or three 
data-points, and/or almost always used the follow-up time as their time- 
related variable. 

In other studies which primarily focused on long-term modeling of 
degeneration in different brain regions, chronological age has been 
mainly used as the time-related variable (Coupé et al. 2019; 2017). This 
assumption simplifies the model, but forces all participant trajectories to 
follow a specific age-related pattern of atrophy, without considering 
their disease progression in terms of clinical symptoms and cognitive 
deficits. 

Here we have used a novel technique to model the AD-related lon
gitudinal change in the brain. To our understanding this is the first time 
that a disease-specific timeline has been used to model the volume loss 
trajectory. We also used a long follow-up time and managed to compare 
the disease trajectories for different brain regions. 

This study is not without limitations, and this should be considered 
when interpreting our findings. First, our use of Jacobian maps as an 
indirect measure of atrophy may be susceptible to misregistration or 
measurement errors despite our pipeline’s robustness. However, all 
nonlinear registrations were visually assessed and cases that did not pass 
this quality control step were removed. Additionally, although we used 
the most widely used atlas, defining the neuroanatomical boundaries of 
the nucleus basalis of Meynert is inherently difficult, given the cluster- 
like nature of this anatomical region. This difficulty is also reflected in 
the limited spatial consistency of the NbM between different published 
atlases (Wang et al. 2022). Another important point to consider is the sex 
imbalance in the different subject groups used here. As shown previ
ously in the data section, data from female subjects drive the measure
ments in the CN+ group, and for MCI groups, male subjects are in the 
majority. Moreover, we are not taking into consideration that there 
might be different patterns of atrophy for subtypes of patients, especially 
when looking into the whole timeline, but early-stage might be too soon 
to see the differences between patterns, keeping our results robust. 
Finally, we used cognitive scores to estimate the time of the disease; 
however, damage to the NbM is primarily associated with impairment of 
attention, which is not well assessed in ADNI. Thus, although the time 

Table 4 
Results for statistical analyses (Eq. 2) for early-stage subgroup.  

Fixed effects Nucleus basalis Entorhinal cortex Hippocampus 

Estimate p-value Estimate p-value Estimate p-value 

Intercept  -0.0872 0.0623.  -0.1401 0.00295 **  -0.0552 0.1486 
EDT  -0.3298 0.0005***  -0.3408 2.27e-08 ***  -0.2406 0.0146 * 
EDT2  -0.3431 0.0014**  -0.1987 0.0164 *  -0.1390 0.2615 
Amyloid (positive)  -0.4260 6.37e-08 ***  -0.2122 0.0012 **  -0.208 0.0025 ** 
Amyloid:EDT  -0.2938 0.0011 **  -0.1834 0.0074 **  -0.1527 0.05709. 
Sex (male):EDT  0.0568 0.4015  0.1598 0.00244 **  0.1616 0.013 * 
APOE4 status (1)  -0.1427 0.0574.  -0.0339 0.53074  -0.0620 0.3583 
APOE4 status (2)  -0.1213 0.0505.  -0.1344 0.41141  -0.1218 0.3448  

Table 5 
Results for statistical analyses (Eq. 3) for early-stage subgroup.  

Fixed effects Estimate p-value t-value 

Intercept  -0.1297 2.56e-07 ***  -5.933 
EDT  -0.5304 1.48e-11 ***  -7.075 
EDT2  -0.2273 0.16206  -1.399 
EC (vs. NbM)  0.031 0.05495.  1.919 
HC (vs. NbM)  0.051 0.00166 **  3.147 
EDT:EC  0.17737 0.01529 *  2.425 
EDT:HC  0.37425 3.25e-07 ***  5.121  
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realignment of the subjects is roughly correlated with the disease start 
point, such time offsets might underestimate the onset of atrophy in the 
NbM. Nonetheless, using measures of global cognition instead of 
focusing on attention ensures a more unbiased approach for comparing 
these three structures. Note that we did not measure atrophy or neuro
melanin in the locus coeruleus, which could potentially serve as another 
early site of disease onset (Jacobs et al. 2021; Engels-Domínguez et al. 
2023). This will be addressed in our future work. 

The results of this study provide additional support for a subcortical 
onset of AD. Accurate disease staging, prior to the emergence of a 
memory impairment, is critical for the development of biomarkers and 
novel intervention targets. 
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