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Early detection of Alzheimer’s disease is essential to develop preventive treatment strategies. Detectible change in brain volume 
emerges relatively late in the pathogenic progression of disease, but microstructural changes caused by early neuropathology may 
cause subtle changes in the MR signal, quantifiable using texture analysis. Texture analysis quantifies spatial patterns in an image, 
such as smoothness, randomness and heterogeneity. We investigated whether the MRI texture of the hippocampus, an early site of 
Alzheimer’s disease pathology, is sensitive to changes in brain microstructure before the onset of cognitive impairment. We also ex-
plored the longitudinal trajectories of hippocampal texture across the Alzheimer’s continuum in relation to hippocampal volume and 
other biomarkers. Finally, we assessed the ability of texture to predict future cognitive decline, over and above hippocampal volume. 
Data were acquired from the Alzheimer’s Disease Neuroimaging Initiative. Texture was calculated for bilateral hippocampi on 3T T1- 
weighted MRI scans. Two hundred and ninety-three texture features were reduced to five principal components that described 88% of 
total variance within cognitively unimpaired participants. We assessed cross-sectional differences in these texture components and 
hippocampal volume between four diagnostic groups: cognitively unimpaired amyloid-β− (n = 406); cognitively unimpaired amyl-
oid-β+ (n = 213); mild cognitive impairment amyloid-β+ (n = 347); and Alzheimer’s disease dementia amyloid-β+ (n = 202). To assess 
longitudinal texture change across the Alzheimer’s continuum, we used a multivariate mixed-effects spline model to calculate a ‘dis-
ease time’ for all timepoints based on amyloid PET and cognitive scores. This was used as a scale on which to compare the trajectories 
of biomarkers, including volume and texture of the hippocampus. The trajectories were modelled in a subset of the data: cognitively 
unimpaired amyloid-β− (n = 345); cognitively unimpaired amyloid-β+ (n = 173); mild cognitive impairment amyloid-β+ (n = 301); and 
Alzheimer’s disease dementia amyloid-β+ (n = 161). We identified a difference in texture component 4 at the earliest stage of 
Alzheimer’s disease, between cognitively unimpaired amyloid-β− and cognitively unimpaired amyloid-β+ older adults (Cohen’s 
d = 0.23, Padj = 0.014). Differences in additional texture components and hippocampal volume emerged later in the disease con-
tinuum alongside the onset of cognitive impairment (d = 0.30–1.22, Padj < 0.002). Longitudinal modelling of the texture trajectories 
revealed that, while most elements of texture developed over the course of the disease, noise reduced sensitivity for tracking individual 
textural change over time. Critically, however, texture provided additional information than was provided by volume alone to more 
accurately predict future cognitive change (d = 0.32–0.63, Padj < 0.0001). Our results support the use of texture as a measure of brain 
health, sensitive to Alzheimer’s disease pathology, at a time when therapeutic intervention may be most effective.
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Introduction
Early detection of Alzheimer’s disease is essential to develop 
effective preventive treatment strategies. Localized atrophy, 
measured as regional volume loss, is commonly detected 
using MRI and is used as an indicator of the pathology of 
Alzheimer’s disease.1 However, macroscopic volume loss is 
not a direct measure of the pathological hallmarks, rather, 
it is an indirect marker of the consequences of pathology. 
As a result, a detectible change in volume emerges relatively 
late in the pathogenic progression of disease2 and is likely to 
be irreversible.

Many features of the years-long preclinical phase of 
Alzheimer’s disease, including accumulation of neuritic pla-
ques, formation of neurofibrillary tangles and neuroinflam-
mation, begin to appear when pathology is less developed, 
and is therefore more likely to be therapeutically modifi-
able.3 The earliest known in vivo indicators of Alzheimer’s 
disease pathology is a decrease in the concentration of 
amyloid-beta (Aβ) in CSF, followed by localized increases 
in Aβ as detected using PET.2 These assays are invasive 
and the latter prohibitively expensive. MRI is a safer and 
relatively more accessible tool for clinical assessment that 
provides valuable spatial information. There is increasing 
evidence that microstructural changes caused by early neuro-
pathology may cause subtle changes in the MR signal that 
can be quantified using texture analysis.4–7

Texture analysis, a branch of radiomics, exploits spatial 
patterns in an image, quantifying features such as smooth-
ness, randomness and heterogeneity. Texture analysis of 
medical images has already provided promising results in 
the area of tumour classification8 (see review by Scalco 
and Rizzo9). More recently, texture analysis has been inves-
tigated as a tool for classifying, predicting and differentiat-
ing Alzheimer’s disease (reviewed by Cai et al.).4 Several 
studies have reported differences in brain MRI texture be-
tween people with Alzheimer’s disease and healthy older 
people5,7,10,11 and between people with mild cognitive im-
pairment (MCI) and Alzheimer’s disease,5,12 and texture 
differences have been shown to predict future conversion 
of people with MCI to a diagnosis of Alzheimer’s dis-
ease.5,7,10,13 Texture differences can also be used to detect 
the presence of Aβ pathology (measured using PET) in peo-
ple with MCI.14 Scoring using Non-local Image Patch 
Estimators (SNIPEs) is a method defined by patch intensity, 
contrast and texture, which has also been shown to be sen-
sitive to Alzheimer’s disease pathology15 and predict con-
version over time.16,17

A direct analysis of texture from structural MRI has the 
potential to detect subtle brain changes associated with 
Alzheimer’s disease pathology before a diagnosis of demen-
tia. However, no research to date has examined whether it 
can detect pathologically relevant information in those 
who remain cognitively unimpaired (CU) but who have evi-
dence of Aβ pathology, a known risk factor for Alzheimer’s 
disease. A primary aim of this study was to identify whether 

the texture of a standard structural MRI scan of the hippo-
campus, an early site of amyloid pathology in Alzheimer’s 
disease,18 is sensitive to such presymptomatic changes in 
the brain microstructure. Furthermore, all related studies 
to date have analysed only cross-sectional texture measures, 
so there currently exists no description of how texture devel-
ops within individuals over the disease course. Therefore, a 
second aim of this study was to explore how hippocampal 
texture changes across the Alzheimer’s disease continuum 
in a mixed cross-sectional/longitudinal design, particularly 
in relation to hippocampal volume and other biomarkers. 
Finally, we assessed to what extent measuring texture fea-
tures could increase the value of clinical MRI scans by pro-
viding additional independent information on brain health 
to that provided by volumetry alone.

Materials and methods
Participants
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial MRI, PET, 
other biological markers, and clinical and neuropsychologic-
al assessment can be combined to measure the progression of 
MCI and early Alzheimer’s disease. For all ADNI partici-
pants, written informed consent was acquired before proce-
dures were performed in accordance with the Declaration of 
Helsinki. All ADNI studies were approved by the appropri-
ate review boards prior to data collection.

The total sample included 863 (CU; age: 72.5 ± 6.56; 
years of education: 16.5 ± 2.53; 56.2% female), 1073 MCI 
(age: 72.8 ± 7.59; years of education: 16.0 ± 2.77; 41.3% fe-
male) and 410 Alzheimer’s disease dementia (ADD) partici-
pants (age: 74.8 ± 7.90; years of education: 15.2 ± 2.90; 
43.4% female). Subsets of this total were used in different 
analyses, which will be reported in the relevant sections, 
and are summarized in Fig. 1. Two primary analysis subsets 
are reported below. A full list of subject IDs included in each 
cohort is available in the associated GitHub repository.

Texture analysis subset
Given the sensitivity of texture features to signal-to-noise, an 
a priori decision was made to calculate texture features only 
in data collected on 3 T MRI. Therefore, only participants 
from ADNIGO, two and three were selected for texture ana-
lysis. Furthermore, a total of 382 sessions across 214 partici-
pants were excluded due to region of interest (ROI) masks of 
insufficient quality (see ‘Image processing’ section below). 
This number is reasonably high as we employed strict criteria 
on mask quality, particularly at the boundaries, more so than 
might be necessary if studying volume alone. Texture ana-
lysis was therefore conducted on a subset of the complete 
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data that comprised 619 CU (age: 72.2 ± 6.28), 629 MCI 
(age: 72.0 ± 7.37) and 229 ADD participants (age: 73.7 ±  
7.85).

Longitudinal model training subset
Estimating the continuous measure of ‘disease time’ required 
participants to have a determined amyloid status (see ‘CSF 
biomarkers’ section below) and data for any of 3 cognitive 
tests [13-item ADAS-cog, Clinical Dementia Rating Scale 
Sum of Boxes (CDR-SB) and Mini Mental State 
Examination (MMSE)] or amyloid PET, either using the 
AV45 tracer or 18F-Florbetapen Amyloid PET tracer. One 
participant was excluded for having extremely high AV45 
values compared with the rest of sample. These estimated 
disease times were therefore calculated for a subset of the 
complete data (including ADNI1) that comprised 1416 
participants: 441 CU-Aβ− (age: 71.6 ± 6.20), 231 CU-Aβ+ 

(age: 73.4 ± 6.33), 480 MCI-Aβ+ (age: 73.2 ± 7.09) and 
264 ADD-Aβ+ (age: 74.2 ± 7.94).

CSF biomarkers
Aβ was used as a grouping factor for cross-sectional analysis. 
Participants were defined as ‘Aβ+’ based on Aβ1–42 thresholds 
provided by ADNI. Where CSF data were available, a thresh-
old of 980 pg/mL was used,19 as measured using the Roche 
Elecsys immunoassay platform. Where CSF data were not 

available for a given participant, amyloid PET data were 
used at a Centiloid threshold.20 Centiloids are a method 
used to consolidate PET data from multiple radiotracers, in 
this case, AV45 and 18F-Florbetapen Amyloid PET tracer, 
and to mitigate inter-site variability.21 Participants were ex-
cluded if the values fell within 5% of these defined boundaries 
in order to mitigate noise due to easily misclassified borderline 
cases, as has been employed in previous studies22–24 (a total of 
103 subjects in the total ADNI cohort). CSF concentrations of 
phosphorylated tau (pTau) were explored in multivariate lon-
gitudinal modelling of biomarker trajectories.

Imaging data
T1-weighted structural MRI data for participants in phases 
ADNIGO, two and three (as these data were collected at 
3 T) were downloaded from adni.loni.usc.edu. Clinical in-
formation, cognitive test scores and biomarker data were ex-
tracted from the ‘ADNIMERGE’ datasheet, downloaded 
25 March 2022. Gradwarp, B1-inhomogeneity corrected 
and N3 bias field corrected images were converted to Brain 
Imaging Data Structure (BIDS) format using the Clinica 
‘ADNI-to-BIDS’ pipeline.25

Image processing
Left and right hippocampi were segmented in native space 
using the T1-only routine of Automatic Segmentation of 

Figure 1 Sample size of cohort subsets used in different analyses. Inclusion criteria for participants in each subset are shown. Where 
amyloid status is relevant to the analysis, the cohort is described by four diagnostic groups instead of three, where the CU group is split into 
Aβ− (CU-Aβ−) and Aβ+ (CU-Aβ+) subgroups. In these cases, MCI and ADD groups are also Aβ+. ‘Cognitive tests’ refer to the 13-item ADAS-cog, 
CDR-SB and MMSE. Aβ PET data include 18F-Florbetapen Amyloid PET tracer and AV45 tracer data. ADAS13, Alzheimer’s Disease Assessment 
Scale (13 questions); CDR-SB, Clinical Dementia Rating scale Sum of Boxes; MMSE, Mini Mental State Examination.
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Hippocampal Subfields, using UPENN-PMC atlas dated 
20 July 2018.26 Masks were visually inspected for quality, 
and excluded if the hippocampal ROI overlapped with sur-
rounding CSF or non-hippocampal structures, or missed 
parts of the hippocampus. This atlas separately segments 
anterior and posterior hippocampal subregions, which 
for this study were combined to create a whole hippocam-
pus ROI which was used to mask the T1w scans (using 
fslmaths).27

The MRI intensities within the extracted ROIs 
were denoised using Advanced Normalization Tools 
DenoiseImage (which did not significantly affect the char-
acterization of texture features).28 Extreme high and low 
values were then excluded from denoised ROIs using the 
μ ± 3σ technique described by Collewet et al.29 This was 
done to limit the effects of partial voluming from sur-
rounding CSF or other tissues. Finally, ROIs were z-scored 
to normalize intensity across participants, as recom-
mended by Um et al.30

Texture analysis
Texture analysis was conducted using the Radiomics Image 
Analysis R package.31 First-order statistics, 3D grey-level 
co-occurrence matrices and grey-level run-length matrices 
were computed for the left and right hippocampus. In brief, 
each element is described as follows. First-order statistics 
describe the shape of the histogram of signal across the re-
gion and includes measures such as skew, kurtosis, energy 
and entropy. The grey-level co-occurrence matrices assess 
the spatial relationship between pairs of voxels to measure 
how often certain values appear adjacently (at a distance of 
one voxel) in each direction (all 26 directions were assessed 
and averaged). The grey-level run-length matrices assess 
how many same-value voxels appear adjacent to each 
other, that is, it is sensitive to runs of the same intensity. 
For grey-level co-occurrence matrices and grey-level run- 
length matrices, images intensities were discretized into 
32 equal-sized bins. A total of 293 features, as well as vol-
ume, were computed. A full description of each of these 
features is provided by Kolossváry et al.31 Texture features 
(and volume) were averaged between hemispheres for all 
analyses.

Different texture analysis procedures and pre-processing 
pipelines can make a considerable difference to texture fea-
tures and there is little consensus on best practices. Where 
possible, we have followed guidelines in the literature and at-
tempted to clearly state our analysis decisions to improve 
replicability of our findings.32–34

Statistical analysis
Feature reduction
We used principal component analysis as a feature reduction 
technique to broadly define texture. Extreme outliers 
(mean ± 3 × interquartile range) were excluded from texture 
variables (0.7% of all data points). Twenty-five variables 
with very low variance (<1e−10) were also excluded. 

Variables were z-scored before calculating the principal com-
ponent analysis. The principal component analysis rotation 
was calculated only on baseline data from CU participants 
with complete texture data and then applied to the entire da-
taset. We aimed to study all components that described ≥5% 
of the variance across CU participants.

Cross-sectional analyses
Linear mixed-effects models were used to assess the relation-
ship between diagnostic group at baseline and hippocampal 
texture and volume in order to determine at which disease 
stage each measure is detectibly different to the healthy state:

Texture or Volume ∼ Dx bl + Age bl + Sex

+ Education + ICV + (1|Site). (1) 

One model was run for each texture component or volume as 
the dependent variable. Four baseline diagnostic groups 
(Dx_bl, a categorical variable) were assessed, defined by a 
combination of clinical diagnosis and amyloid status: 
CU-Aβ−, CU-Aβ+, MCI-Aβ+ and ADD-Aβ+. Models were 
corrected for baseline age (Age_bl), sex, years of education, 
intracranial volume and scan site. Three pairwise post hoc 
models for each of the six variables were also made compar-
ing the Healthy group to each other group. P-values shown 
for this analysis are adjusted for multiple comparisons across 
all 18 tests using Benjamini–Holm method of false discovery 
correction. Cohen’s f and d effect sizes were computed. 
Outliers, defined as mean ± 1.5 × interquartile range, were 
excluded from these analyses.

Disease progression modelling
Longitudinal change in brain structure can be assessed be-
tween groups across various scales including age, time since 
baseline, or even cognitive impairment; however, it is diffi-
cult to define age at disease onset for subjects in the ADNI 
database. This is necessary to be able to merge CU, MCI 
and Alzheimer’s disease subjects together on a common time-
line to see how texture features change with disease progres-
sion. To assess longitudinal texture change across the 
Alzheimer’s disease continuum, we used a novel approach 
to estimate a ‘disease time’ along which participant time-
points could be staged. This method is based on an approach 
described and validated by Kühnel et al.,35 and Raket,36

available in the progmod R package (github.com/larslau/ 
progmod). The method shares the basic assumption of a 
single disease trajectory along a latent disease time scale 
with related methods such as the GRowth models by 
Alternating Conditional Expectation and Latent-Time 
Joint Mixed-effects Models. Compared with these methods, 
our method differs by using data on its original scale and es-
timating different variance parameters for different out-
comes by maximum likelihood estimation, enabling a 
data-driven relative weighting of different outcome mea-
sures. Furthermore, the methods differ in terms of the par-
ametrization of the mean trajectories and patient-level 
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deviations; of note is that our method does not allow patient- 
level random slopes to model deviations from the mean. 
These choices have previously been shown to give better per-
formance for predicting future trajectories of patients on the 
Alzheimer’s disease continuum compared with GRowth 
models by Alternating Conditional Expectation and 
Latent-Time Joint Mixed-effects Models.35

Estimating a latent disease timeline. Here, we simultan-
eously model the multivariate trajectory of the amyloid cen-
tiloid score (PET) and three cognitive test scores: Alzheimer’s 
Disease Assessment Scale (13-item version; ADAS13), 
CDR-SB and MMSE to place each subject on a common 
time scale.

Disease progression was modelled with a nonlinear 
mixed-effects model that jointly described the trajectories 
of the outcome measures (ADAS13, CDR-SB, MMSE and 
amyloid PET centiloid) along the disease course. Based on 
longitudinal observations, subject samples were aligned to 
these mean trajectories by including latent-time variables 
that described the subject-level shifts in disease progression.

Let yijk denote subject i ’s observation of the k th outcome 
measure at timepoint j (tij years after the baseline visit). The 
mean trajectory θk of each outcome over the disease con-
tinuum was estimated from the model

yijk = θk(tij + sfixed(i) + si) + xik + eijk, (2) 

where we will refer to the time argument tij + sfixed(i) + si that 
is shared across outcome measures as disease time.

The fixed effects of the model are θk and sfixed(i), while si 

and xik are subject-level random effects and eijk describes 
the residual variation. The latter three terms are assumed 
to be normally distributed. The parameters were modelled 
as follows: 
• θk: natural cubic spline with 9 degrees of freedom (DoF).
• sfixed(i): fixed effect time-shift describing the average shift 

in disease time subject i’s baseline diagnostic group (i.e. 
CU-Aβ−, CU-Aβ+, MCI-Aβ+ and ADD-Aβ+) and baseline 
age.

• si: random effect time-shift describing the time deviation 
of subject i relative to their baseline group and age.

• xik: random effect intercept describing subject i’s consist-
ent deviation in outcome measure k, an unstructured co-
variance matrix was used to model the correlation 
across outcomes.

• eijk: independent identically distributed Gaussian noise 
with separate variance parameters for each outcome k.

Predicted disease time ̃tij = tij + ŝfixed(i) + ŝi for subject i was 
computed by inserting the maximum likelihood estimate of 
the baseline status fixed effect for subject ŝbl status(i) and the 
maximum a posteriori prediction of the random shift ŝi un-
der the maximum likelihood estimates.

Time 0 on the estimated disease continuum was shifted to 
represent the time at which amyloid pathology exceeds nor-
mal bounds. Within the context of the model, it was defined 

as the time at which median CSF Aβ1–42 exceeded the 95th 
percentile of the Healthy (Aβ−) group.

Predicting trajectories across ‘estimated disease time’.
The estimated disease times for each subject were used to 
compare trajectories of hippocampal volume and the five 
texture principal components (PCs). Values of these outcome 
variables vij for subject i at predicted disease time t̃ij were 
modelled by the following random-effects model

vij = θ(t̃ij) + xi + εij, (3) 

where θ is a natural cubic spline, xi is a subject-level random 
intercept that is assumed to be zero-mean normal distributed 
with variance τ2 and εij is the zero-mean normally distributed 
residual error with variance σ2. These models were fitted 
with between 3 and 6 DoF splines, and the best-fitting model 
for each outcome variable was selected using Bayesian 
Information Criterion (BIC) with maximum likelihood esti-
mation. The selected model was re-fitted using restricted 
maximum likelihood estimation.

Individual trajectories are shown relative to the Healthy 
group, by normalizing trajectories against the CU-Aβ− group 
median and range. Let q0.5 and q0.95 denote respectively the 
median and 95% quantiles (in direction of abnormality) of 
outcome values observed in patients that were classified as 
CU-Aβ− at baseline. Outcome variable abnormality at dis-
ease time t relative to this group was computed as

1
q0.95 − q0.5

(θ̂(t) − q0.5), (4) 

where θ̂ denotes the restricted maximum likelihood estimate 
of θ. This scale shows the magnitude of variable change over 
time, but it does not provide information on the measure-
ment error at any given time, in other words, how sensitive 
that variable is to measuring change in a given individual. 
Sensitivity to change of each outcome variable was com-
puted from the linear mixed-effects model as the derivative 
of the estimated trajectory divided by the standard error of 
the residuals (having removed subject-level intercepts)

1
σ̂

d
dt

θ̂(t). (5) 

Trajectories for variables along these scales were predicted 
for the entire continuum of disease times, excluding extreme 
5% quantiles in order to minimize spurious effects from 
areas with few data points on which to calculate the 
trajectory.

Predicting trajectories across age and disease time sim-
ultaneously. The single-timescale models described in the 
previous section do not fully disentangle the effect of increas-
ing age and estimated disease time. In order to directly ex-
plore the effect of age on hippocampal texture and volume, 
we used dual-timescale models (described by Raket et al.37) 
where we simultaneously modelled outcomes as a function 
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of both progressive age and the estimated disease time calcu-
lated previously.

For each of the six outcome variables (five texture compo-
nents and hippocampal volume), five models for describing 
the relation to disease progression and age were considered, 
and the best was selected using BIC. In the models below, the 
notation for spline functions, random effect intercepts and 
residual errors are the same as in the previous sections.

The five models are all of the form

yij = θ(t̃ij, aij) + xi + εij, 

where θ describe the trajectory as a function of predicted dis-
ease time t̃ij and age aij, xi is a subject-level random intercept 
modelled as a zero-mean normal distribution and εij de-
scribes the independent normal residual error. The five mod-
els differ in their choice of trajectory θ :

No effect of disease progression or age: θ(t̃ij, aij) = k (6) 
Only effect of disease progression: θ(t̃ij, aij) = θd(t̃ij) (7) 

Only effect of progressive age: θ(t̃ij, aij) = θa(aij) (8) 

Additive effect of disease progression and age:

θ(t̃ij, aij) = θd(t̃ij) + θa(at0(i))
(9) 

Interaction effect of disease progression and age:

θ(t̃ij, aij) = θd int(t̃ij)θa int(at0(i)) + θd(t̃ij) + θa(at0(i)). (10) 

To avoid capturing progressive time twice, age at predicted 
disease Time 0 (at0(i)) is used in models where both time 
scales are present, while progressive age (aij) is used when 
age is the sole predictor. For each of these models, 
Schwartz BIC was used to select the most parsimonious mod-
el with between 1 and 6 DoF on each spline term.

Independent information in texture and volume: 
predicting cognitive decline
In order to investigate if hippocampal texture provides add-
itional useful information on top of that provided by volume 
to predict cognitive decline, we compared the variance ex-
plained by three sets of three linear regression models predict-
ing future cognitive ability (over 2 years) in people without a 
diagnosis of dementia at baseline (CU and MCI groups).

CogScore ∼ CogScore bl + Age bl + Sex + Education

+ ICV (11) 

CogScore ∼ CogScore bl + Age bl + Sex + Education

+ ICV + HV (12) 

CogScore ∼ CogScore bl + Age bl + Sex + Education

+ ICV + HV + Tx PC1 + Tx PC2 + Tx PC3

+ Tx PC4 + Tx PC5,

(13) 

where CogScore is ADAS13, CDR-SB or MMSE and HV is 
hippocampal volume. Models were bootstrapped with 

1000 repetitions in order to calculate confidence intervals 
and perform statistical comparison between models, using 
two-sample t-tests, adjusting for multiple comparisons 
across the nine models (three scores × three models) using 
the Bonferroni–Holm method (rstatix R package). These 
models were bootstrapped and adjusted R2 (R2

adj) values 

were compared across models using two-sample t-tests. 
Critically, R2

adj (as opposed to R2) accounts for the varying 

DoF between models and penalizes models with a greater 
number of variables. All statistical tests were two-tailed, 
and an alpha of 0.05 was used to indicate statistical signifi-
cance. All analyses were performed, and plots created in R 
v4.1.1.

Results
Data analysis procedure
To address our study aims, we leveraged both cross-sectional 
and longitudinal analysis techniques using data collected as 
part of the ADNI project. To determine whether hippocam-
pal texture is sensitive to the earliest pathological changes in 
Alzheimer’s disease, we ran linear mixed-effects models on 
baseline data. Using these models, we determined whether 
any detectible differences existed in volume or texture across 
disease stages, including between CU people with and with-
out evidence of amyloid pathology, one of the first known 
detectible changes in Alzheimer’s disease. To assess texture 
change across the Alzheimer’s disease continuum, we used 
a multivariate spline-based mixed-effects model to estimate 
a ‘predicted disease time’ for all participant timepoints based 
on amyloid PET and cognitive scores. Predicted disease times 
were used as a scale on which to compare trajectories of vari-
ous biomarkers, including volume and texture of the 
hippocampus.

Feature reduction
Five principal components of texture explained ≥5% of the 
variance across CU participants, respectively describing 
43, 19, 14, 7, 5% of the variance in CU-Aβ− hippocampal 
texture (total: 88%). Probability density functions in 
Fig. 2A show the distribution shapes of each of these 
components across diagnostic groups before correcting for 
covariates such as age, sex and education. Correlations 
with variables of interest and visual appearance of each com-
ponent are shown in Fig. 2B and C, respectively. Top vari-
able loadings on each PC are shown in Fig. 2D, with full 
variable loadings shown in Supplementary Fig. 1 and 
Supplementary Table 1.

Differences in texture and volume 
between groups at baseline
We observed significant differences in certain texture compo-
nents (Tx PC) between diagnostic groups (Fig. 3). Early in 
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Figure 2 Description of texture components. (A) Probability density functions to show spread of each texture component, and volume, in 
each of the three clinical diagnostic groups. This figure shows all participants for whom texture analysis was run, including those without amyloid 
status data—the CU group is therefore not split into amyloid positivity subgroups. Units for volume are shown here in cm3. (B) Spearman partial 
correlation plot of the relationship between each texture component and volume, other variables of interest; Spearman partial r-values are shown 
for each comparison, with stars indicating significance levels: *P < 0.05, **P < 0.001, ***P < 0.0001. Partial correlations control for age, education, 
sex and intracranial volume. Change-over-time variables (Δ) are calculated as difference scores over 2 years. (C) Examples of hippocampi with 
extreme high/low values for each texture component. Each image shows a coronal view of left hippocampal ROI from an amyloid-negative CU 
participant. Some differences in intensity or clustering are evident, but overall, systematic differences between components are unclear upon visual 
inspection alone. More examples are shown in Supplementary Fig. 2. (D) Loading of top 20 texture variables onto each PC. Absolute values are 
shown on the x-axes, with direction of loading indicated by colour (red: positive, blue: negative). Variable names are prefixed with either ‘fo’ 
(first-order statistics), ‘glcm’ or ‘glrlm’. A full list of loadings is available in Supplementary Fig. 1 and Supplementary Table 1. ADAS13, Alzheimer’s 
Disease Assessment Scale (13 questions); ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU, 
cognitively unimpaired; HV, hippocampal volume; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination; PC, principal 
component.
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the Alzheimer’s disease continuum, differences in texture 
component 4 (Tx PC4) were observed between the CU-Aβ− 

and CU-Aβ+ groups. Differences in Tx PC1, Tx PC5 and hip-
pocampal volume were detectible at the stage of MCI. 
Differences in Tx PC2 were detected in people with demen-
tia. Tx PC3 was not significantly different from the 
Healthy group at any stage. Statistics for these tests are pre-
sented below.

Linear mixed-effects models on hippocampal texture 
at baseline revealed significant differences between diag-
nostic groups in Tx PC1 [F(3,1100) = 14.8, f = 0.20, 

Padj < 0.0001], Tx PC2 [F(3,1055) = 7.04, f = 0.14, Padj <  
0.001], Tx PC4 [F(3,1077) = 39.0, f = 0.33, Padj < 0.0001], 
Tx PC5 [F(3,1032) = 60.0, f = 0.42, Padj < 0.0001] and vol-
ume [F(3,1107) = 80.8, f = 0.47, Padj < 0.0001], but not Tx 
PC3 [F(3, 1050) = 0.973, f = 0.05, Padj = 0.467]. We also ob-
served consistent effects of age across all texture components 
and volume (F’s = 6.24–103, P’s < 0.020).

In order to explore when texture changes occurred in the 
disease course, we compared the CU-Aβ− group to every 
other group by re-running models (1) with only two groups 
at a time.

Figure 3 Group differences in hippocampal texture and volume at baseline. Top: summary statistics from linear mixed-effects model 
showing the strength of the association between each predictor/covariate and each texture component/volume. The size of circles represents the 
F-statistic of each predictor, while the shade represents the false discovery rate-adjusted P-value. Non-significant effects are shown in grey. An 
overall effect of group was seen in all variables except Tx PC3, with the strongest effects seen for volume, Tx PC5 and Tx PC4. Strong effects of age 
were also evident for each variable though this effect was considerably weaker for Tx PC3. P-values were false discovery rate-adjusted across all 
tests for multiple comparisons. Bottom: groupwise raincloud plots showing data for each texture component and volume. P-values shown are that 
of the main effect of group in pairwise models. Non-significant effects are shown with grey brackets. Tx PC4 was the only variable where a 
difference between CU-Aβ− and CU-Aβ+ groups is seen. The P-values shown are adjusted for false discovery rate correction. ADD, Alzheimer’s 
disease dementia; CU, cognitively unimpaired; ICV, intracranial volume; MCI, mild cognitive impairment; PC, principal component
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Differences between CU-Aβ− and -Aβ+ groups
We observed a significant difference between CU-Aβ− and 
CU-Aβ+ groups only for Tx PC4 [F(1,564) = 7.21, d = 0.23, 
Padj = 0.014].

Differences between Cu-Aβ− and MCI-Aβ+ groups
We found a significant difference between CU-Aβ− and 
MCI-Aβ+ groups in Tx PC1 [F(1,710) = 21.2, d = 0.35, 
Padj < 0.0001], Tx PC4 [F(1,695) = 39.0, d = 0.47, Padj <  
0.0001], Tx PC5 [F(1,685) = 47.4, d = 0.53, Padj < 0.0001] 
and volume [F(1,715) = 49.9, d = 0.53, Padj < 0.0001].

Differences between Cu-Aβ− and ADD-Aβ+ groups
Finally, differences between the CU-Aβ− and ADD-Aβ+ 

groups were observed for Tx PC1 [F(1,564) = 37.2, 
d = 0.51, Padj < 0.0001], Tx PC2 [F(1,492) = 11.2, d = 0.30, 
Padj = 0.002], Tx PC4 [F(1,547) = 111, d = 0.90, Padj <  

0.0001], Tx PC5 [F(1,519) = 142, d = 1.05, Padj < 0.0001] 
and volume [F(1,565) = 210, d = 1.22, Padj < 0.0001].

No significant pairwise group differences were found 
for Tx PC3. Comparisons between all other groups are 
shown in supplemental information (Supplementary Fig. 3; 
Supplementary Table 2).

Longitudinal analysis: texture 
trajectories
Calculating disease time
To assess texture change across the Alzheimer’s disease con-
tinuum, we used the previously described multivariate dis-
ease progression model to estimate a latent ‘disease time’ 
variable for all participant timepoints. The model was 
trained on a total of 6465 sessions of data over 1416 partici-
pants. Of these, 441 were in the CU-Aβ− group, 231 CU-Aβ+, 
480 MCI-Aβ+ and 264 ADD-Aβ+. Overall, disease time was 

Figure 4 Trajectories of staging variables for longitudinal modelling in the present sample. The x-axis shows the estimated disease 
time, upon which all variables can be staged. Disease onset occurs at Time 0. Each individual used for staging with multiple timepoints is shown as a 
coloured line. The estimated mean trajectory is modelled for each variable and displayed on top (white line). ADAS13, Alzheimer’s Disease 
Assessment Scale (13 questions); ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU, cognitively 
unimpaired; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination.
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estimated for a total of 9068 timepoints. After fitting, the 
data spanned an estimated disease course of 236 months 
(19.7 years). Figure 4 shows the predicted staging of indivi-
duals across the four variables used for staging.

Fitting longitudinal trajectories of hippocampal 
texture and volume
The estimated disease time calculated above (2) was used as a 
continuous scale on which to stage other variables (3). After 

Figure 5 Estimated trajectories of disease marker variables. Top: individual participant trajectories for each hippocampal texture 
component and volume, with overlaid spline curves. Bottom: spline curves across the calculated disease continuum for each hippocampal texture 
component (red hues), hippocampal volume (purple) and other variables, including CDR-SB. CSF amyloid and CSF pTau (grey hues). Left plot 
shows splines normalized relative to the Healthy group. Dashed lines represent levels of no abnormality (Healthy group median) and 95% 
abnormality (95th percentile of Healthy group). Texture PC4 appeared to change earlier than other texture components, with the greatest overall 
texture change seen in PC5. After Time 0, volume remained more abnormal than all texture components, relative to the CU-Aβ− group. Right plot 
shows each variable’s sensitivity to change at the participant level. Sensitivity to change of each biomarker was computed from the linear 
mixed-effects model as the derivative of the estimated biomarker trajectory divided by the residual standard deviation texture components retain 
relatively low sensitivity to change across the disease course, except texture PC5 which does increase at later stages, though not above the level of 
hippocampal volume. ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU, cognitively unimpaired; 
MCI, mild cognitive impairment; PC, principal component; Tx, texture.
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exclusion of 5% extreme quantiles, these trajectories were cal-
culated using 8164 timepoints over a subset of 1403 partici-
pants of the 1416 participants used above. Longitudinal 
spline trajectories of all five PC texture components were best 
fitted by 3 DoF models (as defined by BIC), while the trajectory 
of hippocampal volume was best fitted by a 5 DoF model.

Figure 5 shows trajectories, relative to the CU-Aβ− group, 
of hippocampal texture and volume alongside CSF biomark-
er trajectories (Aβ and pTau) as well as a representative cog-
nitive trajectory (CDR-SB). Hippocampal volume always 
appeared more abnormal than texture relative to the 
CU-Aβ− group after Time 0.

Plotting sensitivity to change revealed limited sensitivity to 
change in texture measures compared with other biomarker 
variables. In other words, individual-level change is difficult 
to measure accurately, especially at early disease stages, des-
pite evidence for early texture changes on a groupwise basis. 
On this plot, we also see that CSF Aβ was the most sensitive 
marker of change at early stages of disease. At around 5 years, 
CSF pTau and hippocampal volume increase in their sensitiv-
ity, with volume appearing more sensitive than any other 
measure. After ∼8 years, cognition (CDR-SB) becomes the 
most sensitive marker to change and remains so for the re-
mainder of the disease course.

Variable trajectories were plotted across a total 184-month 
(15.3-years, from −2 to 13.3 years) time period. We avoided 
estimating trajectories at the very earliest timepoints as more 
than 2 years before Time 0, staging accuracy may be lower 
as the variability in the four staging variables (amyloid, 
ADAS, CDR-SB and MMSE) is more likely due to other fac-
tors than disease severity, such as noise.

Dissociating effects of age and disease
To assess how texture changes with age, and how that inter-
acts with change due to disease, we tested whether dual- 
timescale models incorporating both age and predicted dis-
ease time [as either additive (equation 9) or interaction 
(equation 10) terms] would have better fit than single- 
timescale models (equations 7 and 8) or a null model (equa-
tion 6). Texture component trajectories were all best ex-
plained by an additive model of age and disease time (as 
determined by BIC). That is, texture changes independently 
along both scales. Age effects were best fit with a single 
DoF, indicating approximately linear change with age 
(Fig. 6). The disease time term for Tx PC1, Tx PC2, Tx 
PC4 and volume was best fitted as a spline with 2 DoF, 
whereas those for Tx PC3 and Tx PC5 were best fitted 
with a 3 DoF spline model.

Figure 6 Interactions between age and longitudinal change in hippocampal texture and volume. Texture change was best described 
by additive models of disease time and age, indicating independent effects of both for all components. Volume change was best described by an 
interaction term between disease time and age, indicating faster atrophy in people who have later-onset disease. The black dotted line represents 
the age trajectory before onset of Alzheimer’s disease pathology (Time 0) and is therefore analogous to a ‘healthy ageing’ trajectory. Each blue 
curve represents a 15-year pathological trajectory for people with different age of disease onset. PC, principal component; Tx, texture.
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Volume was the best fit by a model with an interaction term 
for age and disease time (BIC = 54 801). That is, the disease 
trajectory differed depending on the age of disease onset. 
The model suggested that volume change due to disease was 
faster for people with a later disease onset, and slower for 
those whose disease started earlier in life. Figure 6 shows 
the trajectories of each texture variable and volume.

Texture provides additional 
information to volume
In order to investigate if hippocampal texture provided add-
itional useful information on top of that provided by volume 
alone, we ran three linear models [equations (11)–(13)] pre-
dicting cognitive decline over a 2-year period in CU and 
MCI groups (i.e. those without a diagnosis of dementia at 
baseline): using only covariates (baseline cognition, baseline 
age, sex, years of education, and intracranial volume), with 
hippocampal volume, and with the subsequent addition of 
all texture features (Fig. 7). Adding hippocampal volume to 
the model significantly increased R2

adj in predicting cognitive 
decline of all three cognitive tests [ADAS13: t(1998) = 8.12, 
d = 0.36, Padj < 0.0001; CDR-SB: t(1998) = 9.43, d = 0.42, 
Padj < 0.0001; MMSE: t(1994) = 6.13, d = 0.27, Padj <  
0.0001]. The subsequent addition of texture to the models fur-
ther increased R2

adj in all cases [ADAS13: t(1986) = 14.1, d =  
0.63, Padj < 0.0001; CDR-SB: t(1993) = 7.49, d = 0.34, Padj  

< 0.0001; MMSE: t(1999) = 7.05, d = 0.32, Padj < 0.0001].

Discussion
In this article, we quantified and examined hippocampal tex-
ture, a potential proxy for microstructural pathological 

change, across the Alzheimer’s disease continuum. We iden-
tified a significant difference in a single component of texture 
at the earliest stage of Alzheimer’s disease, between CU older 
adults with and without evidence of Aβ pathology. 
Differences in additional components of texture, and hippo-
campal volume, emerged later in the disease continuum 
along with the onset of cognitive impairment. Using a longi-
tudinal modelling framework, we also show that while most 
elements of texture changed significantly over the course of 
the disease, these measures had low sensitivity for tracking 
individual textural change over time. Critically however, 
we show that texture provided additional information than 
was provided by volume alone, to more accurately predict 
future cognitive change.

Texture is sensitive to 
presymptomatic pathology
Our cross-sectional analyses revealed a temporal ordering in 
which markers of brain structure become abnormal relative 
to healthy ageing. Texture PC4 was different at the CU-Aβ+ 

stage of Alzheimer’s disease—that is, CU older adults with 
amyloid biomarkers. This group is at significantly higher 
chance of future progression to Alzheimer’s disease than 
the CU-Aβ− group.38 This component therefore appears to 
be sensitive to the very earliest stages of pathology and 
may represent a chance to detect damage to extant tissue in 
Alzheimer’s disease before the onset of cognitive impair-
ment. We find that hippocampal volume is only detectibly 
different later, after the onset of cognitive impairment. 
Volume and other later-changing texture variables most like-
ly reflect significant damage to the hippocampus, given the 
temporal colocalization with clinical presentation of cogni-
tive impairment.

A B C

Figure 7 Variance explained (R2
adj) for linear models predicting cognitive decline. Cognitive decline models predict cognitive scores (A: 

ADAS-13, B: CDR-SB, C: MMSE) 24 months after baseline of people without a diagnosis of dementia at baseline, with baseline cognitive score, 
baseline age, years of education, sex and intracranial volume as predictors. Adding volume to these models (orange/middle) significantly increased 
R2

adj. Adding texture (purple/right) significantly increased R2
adj even further in all cases. Comparisons are made using 1000-bootstraped resamples of 

the data. Adjusted P-values, corrected across all tests, are shown. ****Padj < 0.0001. ADAS13, Alzheimer’s Disease Assessment Scale (13 
questions); CDR-SB, Clinical Dementia Rating scale Sum of Boxes; MMSE, Mini Mental State Examination.

Texture analysis in Alzheimer’s disease                                                                        BRAIN COMMUNICATIONS 2023: Page 13 of 17 | 13

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/4/fcad195/7219369 by M

cG
ill U

niversity Libraries user on 01 August 2023



Our results support and build upon previous findings that 
a texture analysis approach can distinguish between people 
with MCI with and without amyloid biomarkers.14,39

Similarly, past research has shown differences in T2 signal 
heterogeneity, as opposed to mean signal, across the hippo-
campus in people with MCI compared with healthy older 
controls.40 Three of our five texture variables were able to 
detect a difference at this stage. However, to our knowledge, 
a difference in hippocampal texture in an asymptomatic 
group with known biomarkers for Alzheimer’s disease has 
not previously been reported. While this effect is relatively 
small (d = 0.23), our result provides robust evidence of the 
ability of texture to detect brain changes at very early stages 
of the Alzheimer’s disease continuum.

The question remains as to whether there is any direct 
biological analogue of PC4 (or any other component of tex-
ture). The factors that load strongly onto PC4 (e.g. negative 
loading of inverse right-polar Gaussian and inverse auto-
correlation grey-level co-occurrence matrix factors) indi-
cate that a ‘high-PC4’ hippocampus possesses a higher 
proportion of high-intensity voxels appearing adjacent to 
other high-intensity voxels. In other words, these cases dis-
play quantifiable clustering of hyperintense areas. This may 
indicate localized increases in CSF due to small amounts 
of atrophy or accumulation of paramagnetic materials. 
Future studies could characterize how microstructural 
changes, for example, neuroinflammation or blood vessel 
damage, affect conceptually interpretable changes in tex-
ture features. We have included speculative descriptions 
on the meaning of each texture feature in supplemental 
information.

An alternative interpretation of our results is that 
changes in texture features are driven by more macroscale 
changes across the hippocampus, such as different propor-
tions of subfields, which have been shown to degrade at dif-
ferent rates due to Alzheimer’s disease pathology.41 A 
mixture of both models may be driving such textural 
changes. In support of the model that microstructural 
changes drive texture, SNIPE scores are a related measure 
that use non-local patch-based methods to segment42 and 
grade43 hippocampus. SNIPE scores depend on the similar-
ity of patch intensity, contrast, as well as texture. In this ap-
proach, healthy adults and patients with Alzheimer’s 
disease can be differentiated using the SNIPE grading 
score.43 SNIPE looks at small patches (e.g. 7 × 7 × 7 voxels) 
of MR intensities and compares them to a pre-labelled li-
brary of MRIs of participants that are either healthy or pa-
tients with Alzheimer’s disease. The SNIPE score is a 
weighted average of the neighbourhood patch similarities 
in the training library. The patch-based method means that 
changes are more likely to be due to microstructural changes 
across a given patch that macroscale changes across the entire 
structure. These SNIPE scores can predict which healthy aging 
community-dwelling participants will progress to Alzheimer’s 
disease over a 12 years of follow-up period15 and differentiate 
patients that have stable MCI from those that will progress to 
Alzheimer’s disease.16,17

Texture develops over the disease 
continuum and improves prediction 
of cognitive change
We used a multivariate modelling technique, adapted from 
previous work,35,36 to determine trajectories of change 
across the Alzheimer’s disease continuum. Cognitive tests 
provide accurate staging at the later stages of disease but 
do a poor job at earlier stages, due to limited variability. 
Amyloid PET, one of the earliest indicators of Alzheimer’s 
disease pathology detectible in vivo improved staging at 
the earliest points in the disease course. Overall, an almost 
20-year disease timeline was estimated.

In line with our cross-sectional analyses, change in texture 
over the disease course is evident; however, hippocampal 
volume appears to change at a faster rate and, ultimately, 
to a greater degree than any texture component. Assessing 
the sensitivity of each variable to change on an individual le-
vel reveals that long-term texture trajectories are mainly dri-
ven by groupwise differences, and that individual change in 
texture is more difficult to measure accurately than volume 
change, likely attributable to noise factors across timepoints. 
We attempted to reduce this noise by averaging data across 
hemispheres; however, this is still an area for future 
improvement.

Even so, we demonstrate that texture features improve 
prediction of cognitive change in preclinical populations 
above and beyond the improvement provided by volume 
alone. This supports previous work showing that texture 
provides more information than volume in identifying 
Alzheimer’s disease,15 and classifying MCI patients who 
convert to Alzheimer’s disease from those who remain 
stable.7,16,17 We also support a finding that even after decorr-
elating texture and volume, texture was able to significantly 
predict cognitive decline in people with MCI over 24 months.5

Our findings validate texture as an important addition to ex-
isting clinical assessments alongside volumetry.

Texture is a versatile tool for 
assessing tissue health
We also show dissociable effects of age and disease time in all 
texture components, as well as volume. This supports the use 
of texture as a generalizable measure of brain health in aging, 
as well as marker of Alzheimer’s disease pathology. Indeed, 
our measured texture features are likely sensitive to a myriad 
of microstructural changes that can affect T1 signal, such as 
water content, inflammatory markers or demyelination.44,45

It has been shown to be useful in characterization and detec-
tion of pathology due to: Parkinson’s Disease,46 tumours,9

and epilepsy.47 It is a strength of texture analysis that it is 
sensitive to this broad array of changes but given the variety 
of factors that can affect T1 signal, specificity remains a chal-
lenge. Specificity could be provided by distribution patterns 
of texture abnormality across the brain, in a similar fashion 
to cortical thickness or volume as measures of atrophy that 
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are agnostic to underlying causes. Although textural changes 
in the context of preclinical Alzheimer’s disease have been 
previously shown to be limited to the medial temporal 
lobes,7 more detailed, targeted analyses remain to be con-
ducted. For example, the utility of texture as a method of as-
sessing structural covariance, and multi-regional patterns of 
disease-related changes that covary over time.

Conclusions and future directions
With further validation, texture analysis of hippocampal 
MRI could be used in conjunction with other measures in ini-
tial screening of clinical trial cohorts for individuals who are 
at risk for Alzheimer’s disease, prior to more expensive and 
invasive tests that provide higher specificity. Given that 
MRI scans are often conducted to assess macrostructural at-
rophy (as measured by volume), or to rule out other causes of 
disease symptoms, texture analysis can feasibly be added to 
existing clinical pipelines to provide additional information 
on microstructural tissue quality.

We have deliberately explored texture on standard 1 mm 
isotropic T1-weighted MRI scans, given their wide clinical 
accessibility, in order to maximize the clinical relevance of 
our findings. However, a consensus on methodological 
approaches and improvements to reduce timepoint-to- 
timepoint noise are necessary if texture is to become a 
marker of individual change over time. Texture analysis 
of other MRI modalities may also hold potential for detect-
ing microstructural abnormalities such as quantitative T1 

and T2, magnetization transfer or quantitative susceptibil-
ity mapping.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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