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 Marek et al. analyzed three very large magnetic resonance imaging (MRI) datasets and 

concluded that thousands of participants are necessary to ensure replicable results in “brain-wide 

associations studies,” which they defined as “studies of the associations between common inter-

individual variability in human brain structure/function and cognition or psychiatric 

symptomatology.”1 This conclusion overgeneralizes the implications of their findings and is 

likely to have an unwarranted chilling effect on neuroimaging research focused on individual 

differences, preventing good research with samples in the hundreds from being funded and 

conducted. To fend off these negative consequences, we explain why their conclusion is not fully 

justified, discuss methods that can yield larger effects, and suggest practical guidelines for 

sample size, recognizing the potential utility of samples in the hundreds. 

 How large samples need to be depends primarily on effect size. The central conclusion of 

Marek et al. boils down to a claim about the expectable range of effect sizes in cross-sectional 

studies of associations between behavioral measures and variables derived from MRI data. If all 

expectable effect sizes are as low as they claim (they found the largest 1% of replicable 

univariate effects to be between |r| = .06 and .16), then samples in the thousands could be 

necessary for adequate statistical power, especially when conducting multiple statistical tests. 

 The median reported effect size in meta-analyses of research on behavioral individual 

differences is about |r| = .20.2,3 Below, we review research demonstrating that effect sizes for 

between-person brain-behavior associations, when using appropriate methods, can be this large 

or larger. To detect a Pearson correlation of .20 at p < .05 with 80% power requires a sample of 

just under 200 participants. Thus, we suggest 200 as a more reasonable minimum sample size for 

correlational neuroimaging research, provided there is reason to expect an effect size of at least 

.20 and the focal analysis involves only a single statistical test. Larger samples are often 
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desirable because multiple tests may need to be conducted and researchers may wish to detect 

smaller effects. However, researchers should not be afraid to use samples in the hundreds rather 

than the thousands, if they have evidence that allows them to anticipate sufficient effect sizes.  

 Expected effect sizes cannot be generalized from one set of methods to all others. In both 

their univariate and multivariate analyses, Marek et al. drew conclusions based on a narrow set 

of methods, relative to the wide array of possible methods. We identify three ways in which 

different methods can produce larger effect sizes for brain-behavior associations, thereby 

allowing detection of replicable findings in samples smaller than 1000. 

 (1) Theoretical matching between behavioral and neural variables. Neither resting-state 

functional MRI (fMRI) nor structural MRI directly assess an aspect of brain function that is 

transparently relevant to any specific behavioral characteristic. Task-based fMRI, however, can 

induce brain states that correspond more clearly to the behavioral measure in question. Task-

based brain-behavior associations are consistently stronger than resting-state based associations 

in cross-validation studies of very large samples, often with effects greater than r = .20.4-7 Marek 

et al. acknowledged that fMRI task data may yield larger effect sizes, but they also improperly 

discounted the one example of such an effect size that they reported from their analyses. In 

Extended Data Figure 3, they reported that the correlation between cognitive ability and 

activation of the dorsal attention network during a working memory task was .34. However, they 

dismissed this finding by mischaracterizing working memory performance as a “confound” that 

needs to be controlled (yielding a much smaller correlation of .14). The plausible causal 

arrangement of the three variables—working-memory-related neural activity, working memory 

performance, and general cognitive ability—is not one of confounding. Rather, working memory 

performance (which is a persistent trait strongly correlated with general cognitive ability8) should 
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act as a mediator between neural activity and general cognitive ability. Thus, the control was 

inappropriate and the correct and theoretically meaningful correlation was .34. Another study of 

the same sample, using multivariate instead of univariate methods, also found neural activation 

during various tasks to predict cognitive ability with correlations around .30.7 Similarly high 

multivariate correlations with cognitive ability were found for task-related functional 

connectivity in 1858 participants from a different sample.4 

 (2) Individualized localization. Although the methods used by Marek et al. are common 

in the field, their effect sizes are unlikely to be fully generalizable because they do not reflect 

best practices for assessing neural variables across participants. They analyzed individual 

vertices or brain regions of interest from standard atlases without any adjustments for the fact 

that functional organization of the brain, especially in cortex, differs from person to person in 

relation to neuroanatomical landmarks. Simply aligning neuroanatomy and then comparing 

individuals based on anatomical locations ensures that the properties of the vertices or regions 

studied will not be fully comparable across participants, thus increasing noise and reducing effect 

sizes. 

 Fortunately, a number of techniques exist for adjusting neural measurements so as to 

compare functionally equivalent vertices, voxels, or regions across participants.5,9-11 One strategy 

involves iterative Bayesian realignment of standard atlases, as employed in group prior 

individualized parcellation9 and multi-session hierarchical Bayesian modeling (MS-HBM).11 In 

1094 participants, Kong et al. showed that multivariate patterns of resting functional connectivity 

predicted 58 behavioral variables more strongly after applying MS-HBM to a standard 

parcellation atlas than before doing so.11 Further, eight of the resulting correlations were larger 

than .20. 
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 Another promising technique is hyperalignment, which addresses the fact that, even 

within a functional brain region, the same information is processed in different voxels in 

different brains. Hyperalignment identifies sets of voxels with similar patterns of neural activity 

for each participant and treats them as the relevant neural unit of analysis. In the same sample in 

which Marek et al. reported correlations with working-memory-related activation, Feilong et al. 

were able to predict cognitive ability using estimates of functional connectivity based on 

hyperalignment, with average multivariate effect sizes of r = .53 for task data and r = .44 for 

resting-state, across all brain regions.5 

 (3) Improved measurement. In both the neural and behavioral domains, observed effect 

sizes are limited by the reliability and validity of the variables under investigation. Although 

Marek et al. claim adequate reliability for their measures, analysis of the same data using item 

response theory has shown inadequate reliability for their measure of psychopathology.13 In both 

neural and behavioral data, reliability and validity may be improved by (among other strategies) 

structural equation modeling with latent variables, which remove measurement error from the 

constructs of interest.  

 In conclusion, the relatively large effect sizes that we cited here provide proof of 

principle for the existence of effects larger than those highlighted by Marek et al. With larger 

effect sizes, smaller samples are viable. Even if multivariate effects often become smaller when 

replicated in other samples, some of them are stable and larger than |r| = .20 when validated out-

of-sample.13 Multivariate methods are powerful tools for identifying effects in samples less than 

1000.14,15 Blanket dismissal of neuroimaging research on individual differences in samples 

ranging from 200–1000 participants would be a grave mistake, squandering valuable research 

opportunities and preventing many labs from conducting important neuroimaging research, thus 
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rendering the field more exclusionary and greatly reducing avenues for creativity, diversity, and 

discovery. 
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