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Abstract

The global signal (GS) in resting-state fMRI, known to contain artifacts and non-neuronal

physiological signals, also contains important neural information related to individual state and

trait characteristics. Here we show distinct linear and curvilinear lifespan patterns of GS

topography in a cross-sectional lifespan sample, demonstrating its importance for consideration

in studies of development and aging. Subcortical brain regions such as the thalamus and putamen

show linear associations with the GS across the lifespan. The thalamus has stronger coupling in

older-age individuals compared with younger-aged individuals, while the putamen has stronger

coupling in younger individuals compared with older individuals. The subcortical nucleus basalis

shows a u-shaped pattern similar to cortical regions within the lateral frontoparietal network and

dorsal attention network, where coupling with the GS is stronger at early and old age, with

weaker coupling in middle age. This differentiation in coupling strength between subcortical and

cortical brain activity across the lifespan supports a dual-layer model of GS composition, where

subcortical aspects of the GS are differentiated from cortical aspects of the GS. We find that

these subcortical-cortical contributions to the GS depend strongly on the lifespan stage of

individuals. Our findings demonstrate how neurobiological information within the GS differs

across development and highlight the need to carefully consider whether or not to remove this

signal when investigating age-related functional differences in the brain.

Keywords: aging, artifact removal, brain development, denoising strategies, intrinsic functional

connectivity, frontoparietal network, signal versus noise
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Introduction

One of the biggest challenges in neuroscience is separating signal from noise (Uddin,

2020). In functional neuroimaging generally, and in human connectomics investigations using

resting-state functional MRI (fMRI) data specifically, this challenge has been addressed with

processing pipelines that mitigate artifacts known to obscure neural signals (Ciric et al., 2017;

Parkes et al., 2018). The goal of these processing steps is to differentiate noise and relevant

neural signals in fMRI data by removing physiological, hardware, and head motion-related

signals to permit the discovery of underlying functional network architectures in the human

brain. The “global signal” (GS) refers to the time series of signal intensity averaged across all

voxels covering the brain, yielding one aggregate statistic per subject. The process of GS

regression has been widely adopted as a robust method for attenuating noise due to cardiac and

respiratory events and other confounding signals (Power et al, 2017). GS regression can also

improve functional connectivity (FC) prediction of behavior (Li et al., 2019a). However, the GS

is also an important component of brain function. Simultaneous fMRI-intracranial EEG studies

in macaque monkeys demonstrate that gamma-band cortical electrical activity exhibits a positive

correlation with BOLD changes across the entire cerebral cortex (Scholvinck, 2010) and

unilateral suppression of the cholinergic basal forebrain causes changes in GS topography

(Turchi et al., 2018). Simultaneous measurement of resting-state fMRI and calcium activity in

awake rats has demonstrated significant correspondence between the GS measured

non-invasively and neural spiking activity (Ma et al., 2020). Taken together, the emerging picture

from these studies suggests that the GS contains relevant neural components, and does not

simply represent noise in neuroscience investigations (Bolt et al., 2022; Li et al., 2019b).

The GS has also been shown to contain important information related to behavioral traits

and intrinsic network organization in humans. We previously demonstrated that GS topography

was related to a population axis of positive and negative life outcomes and psychological

function, particularly weighted in frontoparietal executive control network regions, in a sample

of over 1000 22-37 year old adults (Li et al., 2019b). Positive and negative life outcomes

included measures of education, life satisfaction, cognitive flexibility, aggressive and

internalizing behavior, alcohol abuse, and antisocial personality among others. More recently, we

have shown that a dynamic spatiotemporal pattern that explains ~20% of resting-state BOLD

variance has a time series signature that is almost perfectly correlated (r = 0.97) with the GS
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(Bolt et al., 2022). This spatiotemporal pattern consists of negative cortex-wide BOLD

amplitudes within somato-motor-visual (SMLV) complex, that then propagate toward cortical

regions overlapping primarily with the frontoparietal network (FPN), but also with the default

network (DN) and primary visual cortex (V1), followed by a spatiotemporal sequence with

positive BOLD amplitudes with the same dynamics. These findings further suggest that the

resting-state fMRI GS contains a rich source of important information relevant to large-scale

brain network functional organization and individual differences in human cognition and

behavior.

These results fit with the more recent conception of the GS as an important source of

neural information, rather than being solely a source of noise. Accordingly, a recently developed

dual-layer model of GS composition proposes that the GS represents two different layers of brain

function (Zhang and Northoff, 2022). The first is a background subcortical-cortical layer where

cortical activity is modulated by arousal and vigilance via subcortical regions such as the

thalamus, basal forebrain, and midbrain. The second is a foreground cortico-cortical layer that is

represented by network integration and segregation that is associated with cognitive states during

rest and task. These two layers may operate in concert or independently to facilitate brain

activity. This dual-layer model of the GS helps to reconcile the involvement of the GS in arousal,

physiology, and cognition. However, it is currently unclear how subcortical and cortical brain

activity contributing to the GS may differ across the lifespan.

Here we undertake a comprehensive assessment of age-related changes in spatial

topography of brain regions associated with the GS across the lifespan. Despite the large amount

of attention given to characterizing GS topography (for a review see: Ao et al., 2021) and the

impact of GS regression on some of the most commonly deployed preprocessing pipelines (Ciric

et al., 2017; Linkes et al., 2018; Power et al., 2017), the question of how age shapes the

topography of the GS has not been carefully considered. Consequently, the extent that existing

findings documenting lifespan changes in large-scale functional brain network configuration are

potentially confounded with the differential implementation of GS regression across research

groups is entirely unknown. We find distinct GS topography associations with age that were

reliably present across multiple fMRI data preprocessing procedures. The findings suggest that

the GS conveys neurobiologically meaningful information that changes over the course of human
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development, and developmental and aging studies that implement GS regression warrant careful

reconsideration.

Materials and Methods

Subjects and fMRI data

A 10 minute resting-state fMRI scan was obtained from 601 subjects (6-85 years old; 240

males; Supplemental Figure 1) without a current Diagnostic and Statistical Manual of Mental

Disorders (DSM) diagnosis from the Nathan Kline Institute (NKI) enhanced publicly available

data repository (Nooner et al., 2012) (http://fcon_1000.projects.nitrc.org/indi/enhanced/). All

participants provided written informed consent (written assent was obtained from minors and

their legal guardian) for their data to be shared anonymously through the International

Neuroimaging Data-Sharing Initiative (INDI) website (http://fcon_1000.projects.nitrc.org/).

Brain imaging was performed on a Siemens Trio 3.0T scanner that collected a T1 anatomical

image and multiband (factor of 4) EPI sequenced resting-state fMRI data (2x2x2 mm, 40

interleaved slices, TR = 1.4s, TE = 30 ms, flip angle = 65°, FOV = 224 mm, 404 volumes).

Participants were instructed to keep their eyes open and fixate on a cross centered on the screen.

For quality control, we ensured that all participants had less than 0.5 mm average framewise

displacement (FD). Linear regression revealed a significant linear FD-age association (β = 0.35,

p = 1.23E-18) but no significant quadratic FD-age association (p = 0.9). Therefore, head motion

was used as a nuisance covariate in all analyses.

Preprocessing Pipelines

In order to account for non-neuronal artifacts and head motion, analyses were conducted

across several preprocessing pipelines (MP - minimally preprocessed; CR - covariate regression;

ICA-FIX; temporal ICA (tICA). Spatial ICA denoising, on which ICA-FIX is based, has been

identified as one of the most effective tools for removing spatially structured noise artifacts from

fMRI data (Ciric et al. 2018; Parkes et al., 2018). We also applied temporal ICA (tICA), which

complements spatial ICA by removing temporally structured global noise (Glasser et al., 2018;).

Collectively, these methods were investigated to ensure that non-neuronal artifacts were not

driving the lifespan GS topography associations. These preprocessing pipelines demonstrate that

GS topography associations with age are robust to a range of widely-used denoising procedures.
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Minimally Preprocessed (MP) Pipeline

All resting-state fMRI data were preprocessed using FSL, AFNI, and SPM functions

through DPARSF-A in DPABI (Yan & Zang 2010). The first five images were removed to allow

the MRI signal to reach equilibrium. Next, resting-state fMRI data were despiked using AFNI

3dDespike, realigned and normalized with DPARSF-A into 3mm MNI space using a priori SPM

EPI templates, smoothed using AFNI 3dBlurToFWHM (6mm), and bandpass filtered using

DPARSF-A (0.01 - 0.1 Hz).

Covariate Regression (CR) Pipeline

After smoothing, DPARSF-A was used to calculate and regress out nuisance variables for

covariate regression (CR) consisting of the Friston 24 motion parameters (six rigid-body head

motion parameters, the previous time point for all six parameters, and the 12 squared derivatives;

Friston et al., 1996), white matter time-series and cerebral spinal fluid time-series (using DPABI

default masks), and a linear detrend. Finally, the data were bandpass filtered.

ICA-FIX Denoising

Subject-level spatial ICA denoising (Griffanti et al., 2014) was conducted using ICA-FIX

on minimally preprocessed data that was smoothed, but not subjected to covariate regression or

bandpass filtering. The ICA-FIX classifier was trained on hand-classified independent

components separated into noise and non-noise categories on data from 24 subjects (randomly

sampled by choosing subjects separated by ~10 years of age, and also choosing subjects with

small and large amounts of head motion). Noise and non-noise components were classified by

visual inspection using component maps, time-series, and power spectra (Griffanti et al., 2017).

The resulting component classifications were then fed into FMIRB's ICA-FIX classification

algorithm (Salimi-Khorshidi et al., 2014) to automatically classify noise and non-noise

components from individual subject data. Next, components classified as noise were regressed

out of the data. Finally, the Friston 24 motion parameters and a linear trend were regressed out of

the data, before a bandpass filter was applied.

Temporal Independent Component Analysis (tICA) Denoising
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The temporal ICA (tICA) pipeline was conducted using the FastICA algorithm in Python

(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html). The

tICA first conducted a group spatial ICA (sICA) on all 601 resting-state scans producing 125

independent components ( Glasser et al., 2018; Smith et al., 2012; Supplemental Figures 2-6).

Classification of noise and non-noise components were conducted according to the procedure

detailed in the ICA-FIX pipeline. Thirty-nine sICA components classified as noise were then

regressed out of the remaining 86 non-noise sICA component time-courses. The cleaned time

courses from the sICA were then concatenated across subjects to produce 86 time-courses, each

with 239,799 TRs (399 TRs x 601 subjects). These concatenated cleaned sICA time-courses and

representative group component spatial maps were then subjected to a tICA that produced 75

tICA time-courses and the associated group tICA spatial component maps (Supplemental

Figures 7 and 8). Temporal ICA components can be classified just as spatial ICA components

with visual identification of network activity and noise activity (Glasser et al., 2018). Nineteen of

the 75 tICA components were identified as noise (Supplemental Figure 9). These components

consisted of anti-correlated activity within the brain stem (e.g., TC 2, TC 17, TC 18) and striped

banding representing head motion (e.g., TC 14, TC 28). Temporal ICA component 72

(Supplemental Figure 9) showed a general overall negativity across the cortex with little

anti-correlation. Such tICA components in previous work have been proposed to represent a

global component thought to be associated with the noise aspects of the GS (Glasser et al., 2018;

Smith et al., 2012).

Finally, the time-series from the 19 noise group tICA components, the 39 group sICA

noise components, the Friston 24 motion parameters, and a linear detrend were regressed out of

each subject’s resting-state data before a bandpass filter was applied. More conservative and

liberal classifications of tICA noise components (that did and did not include tICA component 72

(Supplemental Figure 9) produced similar results to the original 19 noise-component

classification presented here. This shows that the noise and non-noise classification criteria of

tICA components did not influence the pattern of results presented here.

Scrubbing
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Frames where FD exceeded 0.5 mm (Power et al., 2012) were not included in the

regression model (average number of scrubbed frames per subject was 31.43 of 399 TRs

(12.70%).

Global Signal Topography and the General Linear Model

The GS was calculated as the mean time-series of all gray matter voxels within a SPM

gray matter probability mask thresholded at 20%. Previous research has shown that the GS

calculated across all voxels (white matter, CSF, etc.) in the brain compared to the GS calculated

across only gray matter voxels in the brain are nearly identical (Glasser et al., 2018; Li et al.,

2019) making it unlikely that the current methodology influenced the results. Linear regression

between the GS time-series and the time-series of each voxel produced whole-brain voxel-wise

beta maps. Frames where FD (Power et al., 2012) exceeded 0.5 mm were not included in the

regression model. Next, each individual subject’s beta map was converted to z-statistics. Two

general linear models (GLM) were then run in FSL using the whole-brain voxel-wise beta maps

for all participants as the dependent variable (DV). The first GLM included linear age, mean FD,

and sex as independent variables (IV) while the second GLM included linear age, quadratic age,

mean FD, and sex as IVs. Age was the IV of interest within the first model and quadratic age

was the IV of interest within the second model. The resulting group spatial maps were

thresholded in FSL (voxel-wise uncorrected at p < 0.001 and cluster-wise corrected at p < 0.05)

using Gaussian Random Field (GRF) theory. The two GLMs were run across all four

preprocessing pipelines.

Results

Global Signal Topography across the Lifespan

Global signal topography maps showed increased coupling between the GS and visual,

frontal, and sensorimotor brain regions (Figure 1). GLM results show that GS topography has

distinct cross-sectional associations over the lifespan across subcortical and cortical brain

regions. For subcortical brain regions, the thalamus shows a strong positive linear relationship

with age, where coupling between the thalamus and GS time-series (scatterplot represents voxels

within the thalamus thresholded at z > 5 for presentation purposes) increased across the lifespan.

(Figure 2). The nucleus basalis (-18, -2, -12) showed a positive quadratic effect where coupling
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with the GS was weakest during middle age but stronger in young and old age. Finally, the

putamen showed a negative linear relationship with age where coupling with the GS is strongest

in early age but weakest during old age. These results demonstrate that subcortical regions

involved in arousal and vigilance have distinct age-dependent cross-sectional associations with

the GS across the lifespan.

Figure 1: Average global signal topography across ten year age groups. Increased coupling

between the GS with visual, sensorimotor, and prefrontal cortical regions are found across each

age group.
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Figure 2: Group spatial maps showing subcortical associations between the global signal and

voxel-wise functional connectivity strength across the lifespan (p < 0.001 voxel-wise uncorrected

and p < 0.05 cluster-wise corrected). Negative quadratic associations show that the global signal

has weaker associations with the nucleus basalis in middle aged individuals compared with

younger and older individuals. The thalamus shows a positive linear association, where coupling

with the global signal is stronger in older individuals compared with younger individuals. The

putamen shows a negative linear association where coupling with the global signal is stronger in
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younger individuals compared with older individuals. The z-scored unstandardized beta is on the

y-axis and age is on the x-axis.

For cortical brain regions, the lateral frontoparietal control network (parietal cortex

overlapping with Schaefer ROI 333) (17 Network 400 ROI parcellation; Schaefer et al., 2018),

dorsal attention network (inferior temporal cortex overlapping with Schaefer ROI 271, 272; FEF

overlapping with Schaefer ROI 61, 261) showed a quadratic association with the GS where

network nodes coupled with the GS are strongest at early (< 20 years) and later (> 60 years)

periods of life, and the weakest in middle age (Figure 3). These results demonstrate distinct
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age-dependent large-scale network associations with the GS in networks related to external

attention and cognition such as the control network and dorsal attention network.

Figure 3: Group spatial maps showing cortical associations between the global signal and

voxel-wise functional connectivity strength across the lifespan (p < 0.001 voxel-wise uncorrected

and p < 0.05 cluster-wise corrected). Positive quadratic associations show that the global signal

has stronger associations with regions of the lateral frontoparietal (parietal cortex) and dorsal

attention networks (frontal eye fields and inferior temporal cortex) in younger and older

individuals compared with middle aged individuals. The z-scored unstandardized beta is on the

y-axis and age is on the x-axis.
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Preprocessing Pipelines and Imaging Artifacts

Both linear and quadratic lifespan coupling between GS topography and age were largely

unaffected by preprocessing choices and produced the same linear and quadratic cross-sectional

age effects as the main analysis (Supplemental Figures 10 and 11). In order to ensure that
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different preprocessing pipelines did change the composition of the GS time-series while leaving

GS topography cross-sectional effects with age generally unaffected, within-subject temporal

correlations between GS time-series across different preprocessing pipelines were calculated.

The within-subject average GS time-series showed a strong temporal correlation across all

preprocessing pipelines (rs = 0.73 - 0.96) (Figure 4). The temporal correlation of the GS

time-series between the FIX pipeline and the tICA pipeline was r = 0.76. The lower correlation

between the FIX and tICA pipelines shows that the addition of tICA denoising has a large

influence on the composition of the global signal, demonstrating that a large amount of variance

was removed (r = 0.76; R2 = 58% variance explained). This demonstrated the effectiveness of

tICA denoising in removing spatially and temporal structured fMRI noise within resting-state

data that contribute to the GS, and also demonstrates the robustness of the current GS

topography-age effects.

Despite the large amount of variance removed from tICA denoising compared with

ICA-FIX in the GS time-series, the within-subject GS topography spatial map correlations

showed little changes between the FIX pipeline and the tICA denoising pipeline (r = 0.96). This

demonstrates that spatially and temporally structured noise do not significantly contribute to GS

topography composition (Figure 4); if spatially and temporally structured noise did have an

influence on GS topography, the within-subject spatial map correlation between the FIX and

tICA pipelines should be much lower. Thus, although tICA denoising results in a quantifiable

change in the GS time-series composition, GS topography remains unaffected.

Group level spatial correlations between the voxel-wise GLM linear and quadratic spatial

map outputs were used to quantify the influence of preprocessing pipeline on lifespan age

effects. These results showed that spatial patterns of linear (rs = 0.81 - 0.97) and quadratic (rs =

0.77 - 0.97) GS topography GLM results for age effects are similar across preprocessing

pipelines (Figure 4). Thus, while the tICA preprocessing pipeline removes a significant amount

of GS time-series variability, the within-subject GS spatial topography and group GLM GS

spatial topography cross-sectional age effects remain relatively stable.

Figure 4: Temporal and spatial correlations across preprocessing pipelines. Within-subject

time-series temporal correlations and within-subject maps spatial correlations represent the
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influence of preprocessing pipelines across subjects without considering the influence of age.

Linear age GLM and quadratic age GLM effects represent the influence of preprocessing

pipelines across group GLM effects for linear age and quadratic age. All matrices show strong

associations across preprocessing pipelines (r’s > 0.73). MP = minimally preprocessed; CR =

covariate regression; FIX = ICA-FIX, tICA = temporal ICA.

Head Motion Considerations

To further ensure that head motion was not driving GS topography changes across the

lifespan, we used a multivariate partial least squares analysis (PLS) implemented in Matlab

(McIntosh, Chau, & Protzner, 2004) to identify the spatial relationship between head motion and

GS coupling strength across the GS topography spatial maps from the tICA preprocessing

pipeline. PLS maximizes the covariance among voxels with a behavioral variable of interest that

is represented by a latent variable (LV) (Supplemental Figure 12). This LV represents the

multivariate whole-brain voxel-wise spatial relationship between head motion (as measured by

FD) and GS topography across subjects, and is differentiated from random noise using

permutation testing (5000 permutations, p < 0.05). Each voxel within the LV is subjected to

bootstrap estimation of standard errors (5000 bootstraps; approximates a p value of < 0.001) to

determine if the voxel score is reliably different from zero. Each subject is then assigned a “brain
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score” that represents how strongly that subject's data is represented within the LV. Each

subject’s brain score was then used as an additional nuisance regressor in the linear and quadratic

GLMs assessing the association between GS topography magnitude and age, in addition to the

average FD head motion and sex regressors from the original analyses. The results were

unchanged from the main analyses (Supplemental Figure 13), demonstrating that the influence

of head motion on GS topography is spatially distinct from the influence of age on GS

topography.

Discussion

Global signal regression is a widely used fMRI preprocessing step, yet this practice

remains one of the most controversial topics in network neuroscience (Liu et al., 2017; Murphy

& Fox, 2007; Uddin, 2020). By providing a whole-brain metric of average brain activation (i.e.,

the GS) coupled with individual voxel activation, GS topography represents a unique

representation of intrinsic brain organization related to trait behavior, task states, and clinical

diagnosis (Ao et al., 2021; Li et al., 2019b). Our results show that coupling between brain

regions and the GS depends on lifespan stage and spatial location in the brain. We also find that

GS topography associations across the lifespan are stable across multiple preprocessing pipelines

across the lifespan, demonstrating support for GS topography as a useful way of characterizing

overall brain activity and connectivity related to development. Our results demonstrate the utility

of GS topography in characterizing brain organization across the human lifespan and also

suggest that careful consideration of GS regression is warranted when age-related FC effects are

of interest.

The current study shows quadratic patterns of coupling between the GS and network

nodes within the lateral frontoparietal control network and dorsal attention network. Relative to

middle age, these two networks show stronger associations with the GS at early (< 20 years) and

later periods (> 60 years) of life. The opposite pattern emerges in the medial prefrontal cortex,

caudate, and lower-level visual cortices, where the association with the GS is weakest at early

and later periods of life, with the strongest association with the GS in middle age. These

quadratic associations are similar to lifespan trajectories of functional connections that typically

show a curvilinear pattern of network development, where within-network coupling increases

while between-network coupling decreases until middle age (Fair et al., 2009). After middle age,
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within-network coupling increases while within-network decreases (Betzel et al., 2014; Chan et

al., 2014; Vij et al., 2018). The trajectory of the lateral frontoparietal network also closely

resembles executive function performance across the lifespan, where performance peaks in the

3rd and 4th decade of life before dropping off in old age (Ferguson, Brunsdon, & Bradford,

2021). Taken together, curvilinear trajectories of network integration and segregation, as well as

executive function behavioral performance show similar curvilinear trajectories as the lateral

frontoparietal control network. Thus, our results support a dual-layer model of GS composition

that demonstrates linear cross-sectional changes within the thalamus and sensorimotor regions as

part of the background arousal layer against quadratic cross-sectional lateral frontoparietal

control network changes in the foreground cortico-cortical cognition layer.

The current study showed that subcortical regions have distinct coupling patterns with the

GS across the lifespan. The thalamus presented with stronger coupling with the GS across the

lifespan. The thalamus has been identified as an integral initiating and mediating force of arousal

and vigilance in the brain, as well as facilitating shifts in connectivity, activity, and network

topology (Shine et al., 2023). Stronger thalamic coupling with the GS across age could indicate

that portion of the GS related to arousal becomes increasingly important across the lifespan. On

the other hand, the thalamus has been shown to play an important role in aging and cognition in

task-fMRI studies (Goldstone, Mayhew, Hale et al., 2018). Thus, it is possible that the thalamus

plays an integrative role in both vigilance and cognitive processes across the lifespan in the

context of its role in GS composition.

The nucleus basalis presented with stronger coupling with the GS at early and late

periods of life compared to middle age. Previous research has demonstrated that deactivation of

the nucleus basalis via chemical intervention in macaques modulates the BOLD GS in the

ipsilateral hemisphere (Turchi et al. 2018). This suggests a causal role of the nucleus basalis in

cortical BOLD activity. The current study shows that the nucleus basalis has the same u-shaped

pattern of coupling with the lateral frontoparietal and dorsal attention networks. Within the

context of the current study, this may suggest that the contribution of nucleus basalis activity to

the GS coordinates activity within the lateral frontoparietal control and dorsal attention networks.

However, it is not possible to determine the causal direction of this relationship across the

lifespan as in vivo manipulation of the nucleus basalis is not possible to conduct safely in

humans.
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The results are in accord with the dual-layer model of GS composition (Zhang &

Northoff, 2022) that proposes a subcortical-cortical background layer associated with arousal and

vigilance via the thalamus and basal forebrain (Liu et al., 2018) and a cortico-cortical foreground

layer associated with network organization and cognitive rest-task states (Zhang et al., 2021).

Within the context of the current study we find that subcortical and cortical contributions to the

GS vary across the lifespan. In early life, the GS shows stronger coupling with the putamen,

caudate nucleus, lateral frontoparietal control network, and the dorsal attention network. In

middle age, the coupling between these regions and the GS is weakest with only the thalamus

showing increased coupling with the GS. Finally, in old age, all subcortical and cortical regions

show strong coupling with the GS besides the putamen which shows its weakest coupling with

the GS in older age. These differing patterns of coupling across the lifespan suggest that the

contribution of various brain regions to the GS change across the lifespan. The changing

composition of brain activity contributing to the GS across the lifespan may be an attempt at

optimizing arousal and vigilance processes of the background subcortical-cortical layer with

cognitive processes of the cortical foreground layer. Future studies will need to examine the

mechanisms driving these associations such as identifying how differing levels of brain activity

may be driving relationships with the GS time-series and in turn, influencing GS topography.

Although previous research suggests that temporal ICA denoising effectively removes

structured global artifacts such as head motion, respiration, and cardiac events from resting-state

fMRI data (Glasser et al., 2018), it is still possible that unstructured spatial and temporal noise

has an influence on GS topography and its lifespan associations. Importantly however, the

significant change of GS composition between FIX and tICA preprocessing pipelines, combined

with the fact that the spatial location of age-FC GS topography effects remained virtually

unchanged, suggests that GS topography is somewhat robust to such artifacts. Additionally, it is

unclear if one would want to completely remove respiration and cardiac associated with neural

function as they play an important role in the dual-layer model of GS composition (Zhang &

Northoff, 2022) as they are intricately linked with the global signal (Bolt et al., 2023). These

factors along with previous research showing that the GS is strongly associated with brain

network activity (Gotts et al., 2020) and behavioral traits (Li et al., 2019) show how GS

topography can be of further interest to neuroscientists as a biologically important aspect of brain

function.
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The systematic trajectories of GS topography across the lifespan and difference in age-FC

strength relationships when using GS regression makes interpretation of studies using GS

regression and age as a variable of interest more complex. As the age range of the sample

increases, there is a greater possibility that different brain regions and networks will be

influenced by GS regression. For example, GS regression may have a greater influence on the

lateral frontoparietal network in younger and older age samples compared with middle age

samples. Additionally, GS regression on young individuals may not influence thalamic and

occipital cortex activity as much as GS regression on older adults. Thus, GS regression may have

system-specific implications in categorical and dimensional fMRI age investigations. Further

compounding these issues is that it is unknown if GS regression will be beneficial or detrimental

for identifying cognition related brain activity. That is, it is not possible to determine if the GS is

driving activity in specific networks, or if specific network activity is driving the global signal in

an age-dependent manner. GS regression would be beneficial in the former case, but detrimental

in the latter. Currently, the underlying physiological and neuronal contributions to the global

signal remain unknown.

In conclusion, we show that age is significantly associated with the spatial topography of

the GS in resting-state fMRI data. The thalamus and sensorimotor regions show distinct linear

cross-sectional lifespan patterns compared with the quadratic lifespan patterns found for the

lateral frontoparietal control network. Our results support a dual-layer view of the GS where

composition of the GS may include a subcortical-cortical background layer modulating arousal

via the thalamus and a cortico-cortical foreground layer modulating cognition via the lateral

frontoparietal network that diverge as linear and quadratic effects across the lifespan. Due to the

importance and unabated controversy over GS regression, researchers should be cautious when

considering the implications of its application. As the field of fMRI keeps maturing,

understanding how GS regression may help or hinder statistical analyses, and potentially mask

true age-related FC effects, will continue to be of paramount importance.
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Data and Code Availability: All data are available for download from the Enhanced Nathan

Kline Institute - Rockland Sample data repository

(http://fcon_1000.projects.nitrc.org/indi/enhanced/).

Code used in analyses available on Github:

https://github.com/jasonSnomi/LifespanGlobalSignalTopography
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Supplemental Figure 1: Age and sex distribution and the relationship between head motion and

age.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2022.07.27.501804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501804
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

Supplemental Figure 2: Group spatial ICA components classified as signal.
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Supplemental Figure 3: Group spatial ICA components classified as signal.
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Supplemental Figure 4: Group spatial ICA components classified as signal.
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Supplemental Figure 5: Group spatial ICA components classified as noise.
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Supplemental Figure 6: Group spatial ICA components classified as noise.
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Supplemental Figure 7: tICA components classified as signal shown with positive (hot) and

negative (cold) colors.
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Supplemental Figure 8: tICA components classified as neural signal shown with positive (hot)

and negative (cold) colors.
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Supplemental Figure 9: tICA components classified as noise shown with positive (hot) and

negative (cold) colors. The boxes highlighted in yellow were components used in a more

conservative tICA denoising with only 8 tICA noise components. The results were similar to all

other pipelines. TC 72 presented a general global reduction across the brain similar to previous

studies identifying this component as “global noise” (Glasser et al., 2018; Smith et al., 2012).

Pipelines including or not including this component produced similar results.
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Supplemental Figure 10: Linear and quadratic global signal topography age effect group

spatial maps (voxel-wise uncorrected (p < 0.001) and cluster-wise corrected (p < 0.05). These

spatial maps show the consistency of the global signal age topography effects across

preprocessing pipelines. The tICA figures are the same images from main Figure 3 and are

presented here for comparison.
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Supplemental Figure 11: Unthresholded linear and quadratic global signal topography age

effect group spatial maps. These show the consistency of the global signal age topography effects

across preprocessing pipelines.
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Supplemental Figure 12: The multivariate voxel-wise spatial relationship between GS

topography and head motion. A PLS analysis was conducted on individual subject GS

topography spatial maps from the tICA preprocessing pipeline using framewise displacement as

a behavioral head motion covariate of interest. Colors represent bootstrap ratios that approximate

z values (thresholded at approximately p < 0.001); warmer colors represent positive associations

with head motion while cooler colors represent negative associations with head motion.
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Supplemental Figure 13: Linear and quadratic GLM results for the relationship between GS

topography and age when using an additional head motion covariate from a supplemental PLS

analysis. The PLS head motion covariates account for the spatial representation of head motion

within individual subject GS topography maps. These analyses show that the influence of head

motion is represented in a spatially distinct manner in the GS topography maps when compared

to the influence of age. The top panel are the same images from main Figure 3 and are presented

here for comparison purposes.
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