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Abstract 

The Nucleus Basalis of Meynert (NbM) is the main source of cholinergic projection to the 

entorhinal cortex (EC) and hippocampus (HC), where acetylcholine plays a key role in their 

function. Both cholinergic cells of NbM and their receptive targets in the EC and HC show 

sensitivity to neurofibrillary degeneration during the early stages of Alzheimer’s disease. Precise 

delineation of the NbM region on T1w scans is challenging due to limited spatial resolution and 

contrast. Using deformation-based morphometry (DBM), we sought to quantify NbM 

degeneration along the Alzheimer’s disease trajectory and confirm recent studies suggesting that 

NbM degeneration happens before degeneration in the EC or HC. 

MRI scans of 1447 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI1, 

2 and GO) were up-sampled to 0.5 mm voxel-size in each direction (0.125 mm3) before non-

linear registration to an ADNI-based unbiased symmetric average MRI template. A subgroup of 

677 amyloid-positive participants were chosen for volume time course analysis where the 

resulting deformation fields were used to compute a high-resolution Jacobian determinant map 

for each participant as a proxy for local volume change within NbM, EC, and HC masks. Scores 

of volume change were corrected for age and sex and z-scored using normative data from 

cognitively healthy amyloid-negative (CN-) participants (n = 219). Two-sample t-tests were then 

used to compare the baseline differences between NbM, EC, and HC for amyloid-positive 

cognitively normal controls (CN+), amyloid-positive early mild cognitive impairment (eMCI), 

and amyloid-positive late mild cognitive impairment (lMCI). Longitudinal linear mixed-effect 

models were used to compare trajectories of volume change after realigning all participants into 

a common timeline based on their cognitive decline. 
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Results showed a significant cross-sectional difference at baseline between CN+ and eMCI, and 

eMCI and lMCI for both left and right Z-scored NbM volumes. There was no difference in z-

scored EC and HC volumes between CN+ and eMCI groups but results from eMCI and lMCI 

differed significantly in these regions. Longitudinal analysis, with a focus on the early disease 

stages showed the earliest deviation from the CN- trajectory in the NbM and HC in the subject-

specific time realigned data.  

Contrary to the notion that Alzheimer’s disease originates in EC, we found that NbM volume 

changes earlier in the disease trajectory than EC or HC. Converging evidence from cross-

sectional and longitudinal models suggest that the NbM may be a focal target of early AD 

progression, which is often obscured by normal age-related decline. 
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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder with a dual proteinopathy as key 

markers of its pathology: accumulation of amyloid-beta in the form of plaques and 

hyperphosphorylated-tau in the form of neurofibrillary tangles (NFTs). These changes in the 

brain lead to irreversible loss of neurons and an eventual decline in cognitive and functional 

abilities as clinical symptoms of the disease manifest1,2.  

AD has a complex temporal evolution and the precise sequence of the spread of 

neurodegeneration across brain regions, especially in the initial stages, remains unclear. Widely 

accepted models suggest that Alzheimer’s degeneration starts in the entorhinal cortices and then 

spreads through the temporoparietal cortex3. This is supported by a hierarchical system that 

stages AD according to tau aggregation4, where the accumulation of NFT first appears in 

entorhinal cortices and hippocampus. However, this theory has been challenged by histological5–

8 and structural imaging studies9,10, focusing on the early pathological changes to cholinergic 

neurons of the basal forebrain. The main source of cholinergic projections to the cerebral cortex 

is the magnocellular neurons of the nucleus basalis of Meynert (NbM), the largest cluster of 

cholinergic cells that constitute the basal forebrain. The NbM is located within a continuous band 

of structures including the amygdala, hippocampus, and entorhinal cortex which are all at high 

risk of degeneration due to AD pathology. This anatomical positioning of NbM has been 

speculated to be the main reason for its vulnerability to NFTs11. Postmortem studies have also 

shown high densities of NFTs in NbM in early and presymptomatic stages of the disease5. In 

addition, Fernandez-Cabello et al.12 suggested that degeneration of the cholinergic projection 

system is an upstream event of entorhinal and neocortical degeneration, making NbM a possible 

biomarker early in the course of the disease. 

However, the precise delineation of NbM is difficult due to limited spatial resolution and 

contrast in MR images. The NbM lacks strict boundaries with adjacent cell groups and its small 

size poses a challenge for defining this region on common 1mm3 isotropic T1w scans. To 

overcome this challenge, we increased the resolution of our MRI scans, before performing a 

deformation-based morphometry (DBM) analysis. DBM, unlike voxel-based morphometry 

(VBM), does not depend on an automated segmentation of the MR data into gray matter, white 
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matter, and CSF; instead it can use image contrast directly as an explicit representation of these 

distributions13,14. The improvements in nonlinear image registration algorithms allow for 

matching the images locally based on similarities in contrast and intensities, making DBM more 

sensitive than VBM for subtle differences and more resilient to erroneous tissue classification. 

In this study, we precisely quantify volume loss in these structures (NbM, EC, HC) across 

Alzheimer’s disease trajectory.  We look at cognitively normal controls (CN), including those 

that are amyloid-negative (CN-) and those that are amyloid-positive (CN+), as well as amyloid-

positive early mild cognitive impairment (eMCI), amyloid-positive late mild cognitive 

impairment (lMCI) and amyloid-positive patients with dementia due to clinically probable AD. 

In addition to examining these groups cross sectionally, we also map all subjects into a common 

disease timeline to compare longitudinal differences between their continuous volume 

trajectories. We also verify these results by comparing these trajectories in only the CN+ and 

eMCI groups to ensure the later disease groups are not driving the early findings. 

 

Materials and methods 

Dataset 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). 

All ADNI subjects provided informed consent and the protocol was approved by the institution 

review board at all sites. In this work, we selected subjects from ADNI for which T1 MRI data 

was available at the baseline visit. To better focus on AD pathology, and to follow those most 

likely on the Alzheimer’s trajectory, amyloid positivity was also applied as a key inclusion 

criterion using both amyloid Positron Emission Tomography (PET) scan and CSF biomarker, 
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with a cut-off of 0.79 SUVR (using composite reference region, corresponding to the ADNI 

standard whole cerebellum-based florbetapir positivity threshold of 1.11) for PET data15 or a 

CSF pTau/Aß markers of more than 0.028 for positivity16,17. From the 1447 ADNI1, ADNIGO, 

and ADNI2 subjects available, 677 subjects (with 1982 scans) met these criteria. In addition, we 

selected the 219 cognitively normal controls that were amyloid negative (CN-) for the z-scoring 

normalization process described below. 

MRI super-sampling 

To address the issue of the very small size of the NbM, we decreased the voxel-size of native 

MRI scans using the upsampling method introduced by Manjón et al.18 (See Fig.  1). In MR 

imaging, the common model assumes that low-resolution voxels can be well modeled as the 

average of the corresponding high-resolution voxel values plus some acquisition noise. To 

construct the high-resolution image, the method proposed by Manjón et al. enforces a structure-

preserving constraint as opposed to imposing an arbitrary smoothness constraint: the down-

sampled version of the reconstructed image should be the same as the noise-free low-resolution 

image for all locations. The super-resolution method is an iterative procedure including (1) a 

patch-based non-local reconstruction step to perform the upsampling and (2) a mean correction 

step to ensure that the reconstructed high-resolution image remains consistent with the original 

low-resolution image. This upsampling method was applied in 3D to all T1w MRI scans prior to 

other pre-processing steps and results were checked visually for wrong outcomes. The up-

sampled scans were then cropped around the medial temporal region to keep the dataset volume 

within a computationally feasible range. 

<Insert Figure 1 about here> 

 

MRI Preprocessing 

All up-sampled T1w scans were pre-processed through our standard longitudinal pipeline 

including image denoising19, intensity non-uniformity correction20, and image intensity 

normalization into range (0-100) using histogram matching. Each T1w volume was then non-

linearly registered to an ADNI-based template using ANTs diffeomorphic registration pipeline21. 
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The quality of the registrations was visually assessed and the six cases (1 eMCI, 3 lMCI and 2 

AD) that did not pass this quality control were discarded.  

 

Deformation-Based Morphometry analysis 

DBM characterizes positional differences between each voxel of a target image and a standard 

brain, which then detects morphological differences over the entire brain. Here, each up-sampled 

subject image was non-linearly registered to an unbiased average template 22, resulting in a 

deformation field as the output. The statistical analyses are then performed on parameters 

extracted from the deformation fields, instead of the registered voxels. In this study, DBM 

analysis was performed using MNI MINC tools23. 

The deformation field D was computed for all subject scans such that the subject S was mapped 

to the template T when deformed by D (i.e., D(S)). To be able to compare all subjects in the 

common (template) space, we used the ANTs inverse mapping of D to map the template T to the 

subject S. The Jacobian matrix of the deformation field is defined as below: 
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The Jacobian map is then defined as the determinant of the Jacobian Matrix at each voxel. 

According to this map, areas showing Jacobian determinant values higher than 1, show larger 

local volume in the subject’s MRI scan relative to the template, while areas of the map with a 

value less than 1 indicate a smaller local volume.  

 

1.1.1. Atlas-based volumetry  

All Jacobian maps were calculated in the template space, thus normalizing for head size. From 

the atlas published by Zaborszky et al. 24, we combined both the Ch4 and Ch4p probabilistic 

areas to define the NbM region. A threshold of 50% was used define the NbM mask 25. For HC 
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and EC regions, atlases were created by running ASHS26, the software for automatic 

segmentation of medial temporal lobe regions on the average template volume. Again, mean 

values of z-scored Jacobian maps in the left and right HC and EC regions for each subject were 

used (Fig. 2). The mean values of Jacobian maps inside the left and right masks were then 

calculated for each subject. 

<Insert Figure 2 about here> 

Longitudinal analysis 

Subject-specific template 

To better assess the trajectory of anatomical changes over the course of the disease, we also 

incorporated follow-up scans into our analysis. Longitudinal image processing aims at reducing 

within-subject variability by transferring information across time, e.g., enforcing temporal 

smoothness or informing the processing of later time points with results from earlier scans. 

However, these approaches are susceptible to processing bias that could be due to non-linear 

registration when using an arbitrary reference image such as a general template. Consistently 

treating a single time point, usually baseline, differently from others, for instance, to construct an 

atlas registration or to transfer label maps for initialization purposes, can already be sufficient to 

introduce bias 27.  

It is unlikely that bias affects all groups equally, considering that one group usually shows only 

little longitudinal change, while the other undergoes significant neurodegeneration. On the other 

hand, using an individual template per subject has been shown to effectively eliminate bias 27. 

The approach which is based on the work done by Fonov et al. 28 treats all data-points equally 

without prioritizing baseline data over the follow-up scans and has been utilized to obtain a more 

accurate anatomical correspondence between time-points. 

To summarize, the objective of the subject-specific template creation algorithm is to find the 

non-linear transformations that minimize the anatomical shape differences between all-time 

points to create the most representative average of the subject's anatomy, where we expect a 1:1 

anatomical correspondence throughout the brain. Processing is achieved in two steps. First, all 

data is processed cross-sectionally to bring each volume into stereotaxic space. Second, this data 

is used to build a subject-specific individual template. 
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After building the subject-specific template, we calculate the local volume change in each data-

point compared to the subject-specific template, resulting in an unbiased relative volume change 

based on time. To make sure that longitudinal change for each subject is comparable with the 

other subjects, the measured change is scaled using the difference between each subject-specific 

template and a general ADNI template (Figure 3). The ADNI template used for this work is 

made up of 150 ADNI subjects (50 cognitively normal, 50 MCI, and 50 dementia due to AD). 

The results were then corrected for age and sex using the healthy amyloid-negative subjects as 

the control group.  

<Insert Figure 3 about here> 

Subject-specific time-shift 

When patients get their diagnosis, whether it is early or late MCI or clinical AD, it is impossible 

to determine exactly when the disease started. Moreover, not all subjects progress in the same 

manner and rate. However, clinical measurements such as cognitive scores can - to some extent - 

estimate where in the disease trajectory each patient stands, with a time scale dependent on the 

clinical or cognitive measures used. To address the issue of estimating the time of disease onset, 

we investigated a new technique that leverages cognitive test scores to estimate a latent timeline 

that models the subject-specific disease progression. 

Here we used the work of Kühnel et al.29 to model the progression of Alzheimer’s disease using 

cognitive scores at different time points. In this work, a nonlinear mixed-effects model aligns 

patients based on their predicted disease progression along a continuous latent disease timeline. 

More specifically, the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog-

13) and the Mini-Mental State Examination (MMSE) were used simultaneously to fit an 

exponential curve to the longitudinal data, calculating time-shifts for each subject. Unlike the 

work in Kühnel et al., where the diagnostic group of each subject was added to the mixed-effect 

model resulting in a group-based difference for the latent timeline, we did not include this label 

in our analysis, making the model blind to any previous classification and hence, purely data 

driven.  

Figure 4 depicts the results of MMSE and ADAS13 scores plotted against the original follow-up 

time (left column), and the subject-level estimated time-shifts (right column).  Longitudinal data 
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from 219 cognitively normal amyloid negative subjects (CN-) was included with the 677 

amyloid positive subjects before running the analyses to ensure a common time scale across all 

subjects for later analysis.  

Additionally, and for the sake of comparison, we repeated the exact same steps as Kühnel’s 29 

and included the group-based difference and found that our results were comparable. Assuming 

the group-based time-shift for cognitively normal subjects is zero, the average time-shift based 

on MMSE and ADAS13 for the eMCI group was 36.8 months (about 3 years) from a latent time 

origin. For lMCI, this shift was 87.5 months (about 7 and a half years) and patients with 

clinically diagnosed AD had 128.8 months (about 10 and a half years) of shift in time.  

<Insert Figure 4 about here> 

 

Statistical analysis 

With both subject-specific estimated time and longitudinal local change in the volume, we 

plotted the trajectories of three regions of interest (HC, EC, and NbM) across the disease 

progression timeline. Longitudinal modeling of atrophy was performed using a linear mixed 

effect model to account for both within-subject variability of volumes over multiple scans and 

between subject changes. All statistical analyses were done using the lme4 package30.  

The estimated disease time (EDT) was used as the fixed effect (including an intercept and both a 

linear and quadratic compound). A cubic time effect was also tested but did not improve the 

model. After evaluation with an Akaike criterion, the final model used the following formulas: 

���  ~  1 �  ��� � ���� � ��	���� � ��	����: ��� � �1 � ��� | ���  (eq. 1) 

���  ~  1 �  ��� � ���� �  !"#$!#"% �  !"#$!#"%: ��� �  �1 � ��� | ���  (eq. 2) 

In equation (1), Amyloid is a categorical variable showing amyloid positivity vs. negativity in 

participants. This would compare the time-based trajectory of all amyloid positive participants 

with those of control normal group (CN-). The term structure in the second equation shows the 

ROI under study (NbM, EC or HC). This equation is added to compare the curves of NbM with 

those of HC and EC only for amyloid positive participants. 
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In a second step, to study the effect of APOE status and sex on the trajectories, these variables 

were added to the model as fixed effects. The model was then calculated as follows: 

��� ~ 1 � ��� � ���� � &%�: ��� � �'(�4 � ��	���� � ��	����: ��� � �1 �
���| ���   (eq. 3) 

The intercept and slope for each subject were considered as random effects. The term Amyloid is 

a categorical variable showing amyloid positivity vs. negativity (same as eq. 1).  

 

Results 
Demographics 

Table 1 shows the demographics of the 5 groups included in this study. There was a significant 

age difference between amyloid-positive normal controls and subjects with early-stage mild 

cognitive impairment (p-value<0.001, t-value=4.25, df=246). The age difference was not 

significant for other groups.   

<Insert table 1 about here> 

 

Atlas-based DBM analysis of baseline data 

Figure 5 shows the distribution of z-scored values of mean DBM Jacobian at baseline for NbM, 

EC, and HC regions, for CN-, CN+, eMCI, lMCI, and patients with clinically probable AD. 

After Bonferroni correction for multiple comparisons, a significant difference was found 

between CN+ and eMCI groups for left, and more substantial on right NbM. Additionally, a 

significant difference was observed between eMCI and lMCI groups, where the difference was 

more substantial in the left NbM.  

The z-scored EC and HC volumes did not show a statistically significant difference between 

CN+ and EMCI groups; However, results from eMCI and lMCI differ significantly in these 

regions for both the left and right hemispheres. All p-values are reported in Table 2. We also 

observed statistically significant differences between lMCI and AD in NbM, EC, and HC 

(P<0.001). The results are also depicted in Fig. 5 for all participants, where left and right ROIs 

are combined to obtain average bilateral measurements. 
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<Insert table 2 about here> 
<Insert Figure 5 about here> 

Longitudinal analysis 

The longitudinal data used in this work included 1982 scans from the 677 amyloid-positive and 

219 cognitively normal amyloid-negative subjects. On average, each subject had ~3 time-points. 

For the CN+ group, the average time-points available per subject was 3.27, for eMCI this 

average was 2.8, for lMCI, 3.68 and for subjects with AD dementia, the average was 2.3 scans. 

Using the latent time shift (Fig. 4) to offset the baseline (and following) scans, we were able to 

plot the changes in three different regions of the brain (NbM, EC and HC) across the estimated 

disease progression timeline (see Fig. 6 (bottom row) and 7). Note that for longitudinal analysis, 

left and right ROIs are combined to obtain bilateral measurements. Figure 6 shows how the 

estimated time-shift, changes the shape of the plots whenever it was used instead of age as a 

continuous measure of time. 

 

<Insert Figure 6 about here> 
<Insert Figure 7 about here> 

 

 

The results of the statistical analyses are also provided in Table 3, where the fitted beta values 

and statistical significance for eq. 1 is reported. 

<Insert table 3 about here> 

 

As can be seen from both Figure 7 and Table 3, when looking into all longitudinal data, EC 

shows a steeper decline across the trajectory, followed by NbM, and then HC (this can be 

calculated using the first derivative of the eq. 1 at EDT=0 (early-stage), where the slope equals 

the coefficient of the EDT in the equation). However, our mixed model shows a more 

pronounced difference between the cognitively normal amyloid-negative group and combined 

amyloid-positive groups in NbM compared to EC (and HC). In addition, the Amyloid:EDT term 

shows that volume loss over time related to amyloid positivity is greater - both numerically and 

statistically - in the NbM compared to the HC and EC. Furthermore, cognitively normal amyloid-
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negative group and combined amyloid-positive groups seem to start differentiating earliest in the 

HC, closely followed by the NbM and then the EC.  

Early-stage longitudinal analyses 

To ensure that the fitted curves in Figure 7 are not driven by the late-stage atrophy of the lMCI 

and AD group, we opted to focus on the only the CN+ and eMCI ‘early-stage’ subjects, 

comparing their trajectories to the CN- group. Figure 8 shows the age- and sex- corrected z-

scores for both CN- and the early-stage CN+ and eMCI groups for NbM, EC and HC. This time 

results show a steeper and earlier decline in the early-stage CN+ subjects in NbM atrophy 

trajectory compared to HC and EC. Additionally, no statistically significant differences were 

observed between normal and abnormal subjects for EC and HC. Age- and sex-normalized NbM 

and HC trajectories for CN- remains flat, while the CN- trajectory for EC declines with time. 

This results in greater volume differences for NbM and HC between the CN- group and the CN+ 

and eMCI groups across the disease time spectrum estimated. 

<Insert Figure 8 about here> 

The results of the statistical analyses for the early-stage analysis are also provided in tables 4 and 

5. Table 4 shows the fitted beta values and statistical significance for eq. 2. This time instead of 

comparing the trajectories of normal and abnormal subjects, we opted to compare the abnormal 

curves of NbM with those of HC and EC. using eq. 2.  Results show the effect of EDT, 

anatomical structure and the interaction term (EDT:structure) on the longitudinal data. The fitted 

model shows that the normalized volume difference at EDT=0 between the NbM and the HC is 

significant (p=0.0166), and between the NbM and the EC is almost significant (p=.055). The 

slope of the trajectory between NbM is statistically steeper than both the EC (p=.015) and the 

HC (p<.001).  

<Insert table 4 about here> 

 
Table 5 shows the effect of EDT, amyloid status, sex:EDT and APOE4 status on the volume 

trajectories of NbM, EC and HC when looking at early-stage dataset using eq. 3.  We see that 

EDT is significant for all three structures, but that EDT2 is significant only for NbM and EC. 

Amyloid positivity results in smaller volumes for all three structures, and over time, amyloid 

positivity results in a significantly steeper decline for NbM (p=.0011, t-value = 3.149 ) and EC 
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(p=.0074, t-value = -2.752) but is only trending for HC (p=.057, t-value = 1.904).  There was a 

trend for greater atrophy of the NbM in subjects with the APOE-4 allele.  

 

<Insert table 5 about here> 

 

Discussion 
 

In this work, we were able to quantify the volume changes in NbM, EC and HC regions due to 

Alzheimer’s disease on T1w scans. Our cross-sectional results show that while macroscopic 

changes in EC and HC emerge as MCI subjects advance toward the later stages, NbM 

degeneration starts sooner, with atrophy apparent in the preliminary stages of early MCI. This 

points to MRI-based measurements of NbM as potential biomarkers for early detection of AD 

and as a marker of disease burden. The findings of the cross-sectional analysis are in line with 

previous studies working on NbM and Basal Forebrain12. It has been long-established that NbM, 

the source of cholinergic innervation, undergoes severe neurodegeneration in Alzheimer’s 

disease. In more recent studies, Schmitz et al.31 have provided evidence that basal forebrain 

pathology precedes and predicts both entorhinal pathology and memory impairment. Our 

findings regarding AD-related atrophy in both EC and HC were consistent with previous studies, 

confirming the neurodegeneration in these regions during the mild cognitive impairment stage. 

The outcome of longitudinal analysis confirms the cross-sectional finding that NbM undergoes 

neurodegeneration earlier than regions such as EC and HC. Once subjects are realigned in time 

with a latent offset starting point for the disease, we find that the NbM is the earliest structure to 

be affected by neurodegeneration measured by atrophy and is the first structure to be associated 

with early cognitive changes, even though the disease time offset was driven by ADAS13 and 

MMSE, tests that are linked more to memory than to attention. It is important to consider the 

very large heterogeneity of disease burden and cognitive decline in the Alzheimer’s trajectory.  

In this work we used a new method of sequencing the disease stage in a continuous manner, 

using the clinical symptoms instead of using age as the time-based variable. Our results of 

subject-specific disease time analysis are comparable with the original work of Kühnel29 on 

subjects from the ADNI dataset. In their work, they found ~25 months of time-shift for subjects 

with memory concern (we did not include this group), ~50 months for eMCI (36.8 months in our 
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work), ~90 months for lMCI (87.5 months in our work) and ~150 months for subjects with 

dementia (128.8 months in our work). The differences may be explained by Kühnel’s use of the 

CDR score while we used ADAS-Cog13 and MMSE to drive the latent time offset as they are 

more sensitive to subtle cognitive changes. This new method enabled us to follow the trajectory 

of the disease progression in macroscopic MRI-based measurements, independent of age (as an 

indirect measure of disease progression) or diagnosis group (which provides a discrete timeline). 

The result of our work is in line with previous studies on the association of hippocampal and 

entorhinal atrophy with sex differences. Two studies on ADNI and MIRIAD determined that 

atrophy rates were faster by 1–1.5% per year in women with aMCI and AD dementia than in 

men 32,33. However, while we found a sex:EDT effect for HC and EC over and above that 

expected for normal age and sex, we were unable to see the effect of sex on NbM atrophy rates.  

To ensure that more pronounced volume changes in the later-stages of the disease were not 

driving the measurements for earlier stages through an artefact of model fitting, we defined a 

new group consisting only of cognitively normal amyloid positive subjects and those with early 

MCI, referred to as “early-stage”. We then repeated our statistical analyses on this group and 

compared the longitudinal changes with healthy amyloid negative subjects. The results showed 

that even in the early stage of AD, NbM shows a steeper atrophy trajectory compared to HC and 

EC, and this difference becomes more pronounced as the disease progresses.  

This study is not without limitations, and this should be considered when interpreting our 

findings. First, our use of Jacobian maps as an indirect measure of atrophy may be susceptible to 

misregistration or measurement errors despite our pipeline’s robustness. However, all nonlinear 

registrations were visually assessed and cases that did not pass this quality control step were 

removed. Additionally, although we used the most widely used atlas, defining the 

neuroanatomical boundaries of the nucleus basalis of Meynert is inherently difficult, given the 

cluster-like nature of this anatomical region. This difficulty is also reflected in the limited spatial 

consistency of the NbM between different published atlases25. Another important point to 

consider is the sex imbalance in the different subject groups used here. As shown previously in 

the data section, data from female subjects drive the measurements in the CN+ group, and for 

MCI groups, male subjects are in the majority. Moreover, we’re not taking into consideration 

that there might be different patterns of atrophy for subtypes of patients, especially when looking 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.14.547956doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.547956
http://creativecommons.org/licenses/by-nc-nd/4.0/


into the whole timeline, but early-stage might be too soon to see the differences between 

patterns, keeping our results robust. Finally, we used cognitive scores to estimate the time of the 

disease; however, damage to the NbM is primarily associated with impairment of attention, 

which is not well assessed in ADNI. Thus, although the time realignment of the subjects is 

roughly correlated with the disease start point, such time offsets might underestimate the onset of 

atrophy in the NbM. Nonetheless, using measures of global cognition instead of focusing on 

attention ensures a more unbiased approach for comparing these three structures. 

The results of this study provide additional support for a subcortical onset of AD. Accurate 

disease staging, prior to the emergence of a memory impairment, is critical for the development 

of biomarkers and novel intervention targets.  
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Figure legends 
 

Figure 1 super-resolution results. (A) a super-sampled MRI scan from ADNI dataset and (B) 
the original low-resolution scan 
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Figure 2 regions of interest. NbM (left), Hippocampus (middle), and Entorhinal cortex (right). 

 

  

 

  

 

 

Figure 3 Simplified diagram of the method used to calculate overall volume change in 
reference to an ADNI template. 
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Figure 4 Predicted patient staging using MMSE and ADAS-Cog-13 scores. The horizontal 
axis is the time scale predicted by the model that is adjusted for subject-level differences in 
disease stage, thus bringing all subjects onto a common timeline. 
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Figure 5 Mean z-scored Jacobian value. Scores for average NbM (left), HC (middle) and EC 
(right) (***: p-value<5e-06; **: p-value<0.005; *: p-value<0.05; NS: Not significant) 

  
 

 

 

 

 

Figure 6 Volume change in NbM, HC, and EC. Volume changes across the age (top row), 
across the estimated disease timeline (middle row) and the across the estimated disease timeline 
after z-score normalizing the volume measurements for age and sex (bottom row). 
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Figure 7 Longitudinal age- and sex-corrected zscore volumes for NbM, HC, and EC. (left to 
right) across the predicted timeline (estimated using eq. 1). Black lines indicate the CN- group 
and red shows all amyloid-positive subjects from CN+, eMCI, lMCI and AD subjects. 

 

 

Figure 8 Early-stage volume change. Longitudinal volume change in NbM, HC, and EC (left 
to right) across the predicted disease timeline (estimated using eq. 1). For each structure for CN- 
(black) and the early-stage CN+ and eMCI groups (red). 
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Table 1. Baseline demographic 

Groups  Age (y) Sex (% Male) 

CN- (N=219) 73.59±5.8 56.47% 

CN+ (N=117) 74.6±5.9 41.6% 

EMCI (N=131) 72.1±6.9 63.9% 

LMCI (N=242) 73.5±7.4 62.4% 

AD (N=187) 72.5±6.7 56.1% 

Total Aß+ (N=677) 73.6±7.3 56.7% 

 

 

Table 2. Statistical differences of atlas based DBM scores between diagnostic groups  

Region 

 CN+ vs eMCI   eMCI vs lMCI 

 Cohen’s d t-value p-value   Cohen’s d t-value p-value 

Right NbM  0.38  3.087* 0.0089   0.4 3.601** 0.00038 

Left NbM  0.33 2.247* 0.0258   0.47 4.447** 1.261e-05 

Right EC  0.06 0.4778 0.6332   0.68 6.0101*** 7.002e-09 

Left EC  0.05 0.3878 0.6985   0.71 6.3251*** 1.255e-09 

Right HC  0.15 1.167 0.2446   0.73 6.266*** 1.953e-09 

Left HC  0.12 0.916 0.3605   0.81 7.067*** 1.906e-11 

 

Table 3. Results for statistical analyses (eq. 1) 
 
Fixed effects 

Nucleus basalis Hippocampus Entorhinal cortex 
Estimate p-value Estimate p-value Estimate p-value 

Intercept -0.1010 0.0494* -0.5982 0. 184767 -0.1446 0.000828 *** 
EDT -0.3187 5.19e-06 *** -0.1555 0.010896 * -0.3739 1.62e-11 *** 
EDT2 -0.2365 4.24e-08 *** -0.1001 0.005968 ** -0.1873 2.19e-08 *** 
Amyloid (positive) -0.4479 1.42e-13 *** -0.3599 1.25e-11 *** -0.2299 5.50e-06 *** 
Amyloid:EDT -0.3326 0.000107 *** -0.2569 0.000742 *** -0.1876 0.006084 ** 

 

 
Table 4. Results for early-stage analyses (eq. 2) 

Fixed effects Estimate p-value t-value 

Intercept -0.1297 2.56e-07 *** -5.933 
EDT -0.5304 1.48e-11 *** 

 -7.075 
EDT2 -0.2273 0.16206 -1.399 
EC vol (vs. NbM) 0.031 0.05495 . 1.919 
HC vol (vs. NbM) 0.051 0.00166 ** 3.147 
EDT:EC vol 0.17737 0.01529 * 

 2.425 
EDT:HC vol 0.37425 3.25e-07 *** 5.121 
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Table 5. Results for early-stage analyses (eq. 3) 
 
Fixed effects 

Nucleus basalis Entorhinal cortex Hippocampus  
Estimate p-value Estimate p-value Estimate p-value 

Intercept -0.0872 0.0623. -0.1401 0.00295 ** -0.0552 0.1486 
EDT -0.3298 0.0005*** -0.3408 2.27e-08 *** -0.2406 0.0146 * 
EDT2 -0.3431 0.0014** -0.1987 0.0164 * -0.1390 0.2615 
Amyloid (positive) -0.4260 6.37e-08 *** -0.2122 0.0012 ** -0.208 0.0025 ** 
Amyloid:EDT -0.2938 0.0011 ** -0.1834 0.0074 ** -0.1527 0.05709. 
Sex (male):EDT 0.0568 0.4015 0.1598 0.00244 ** 0.1616 0.013 * 
APOE4 status (1) -0.1427 0.0574. -0.0339 0.53074 -0.0620 0.3583 
APOE4 status (2) -0.1213 0.0505. -0.1344 0.41141 -0.1218 0.3448 
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