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The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales,
from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation.
Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent
changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-
echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive
to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel
and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate
functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality,
consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-
specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional
connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network
was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches
to characterize the architecture of functional brain aging.
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Introduction

Spontaneous oscillations in brain activity provide the
basis for characterizing large-scale functional networks
(Fox and Raichle 2007; Biswal et al. 2010; Yeo et al. 2011).
This intrinsic functional network architecture is deter-
mined by both genetic factors and experience-dependent
neuroplastic changes occurring across timescales, from

moments to decades (Stevens and Spreng 2014). Key
organizational features of the intrinsic aging connectome
include reduced within- and greater between-network
connectivity (Chan et al. 2014; Geerligs et al. 2015), result-
ing in a dedifferentiated, or less segregated, network
architecture (Wig 2017).

There is now abundant evidence that intrinsic network
dedifferentiation is a global feature of functional brain
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aging (Chan et al. 2014; Geerligs et al. 2015; Stumme et al.
2020 and see Damoiseaux 2017; Wig 2017 for reviews).
This may reflect functional reorganization in response
to systemic structural, neurophysiological, vascular, or
metabolic alterations occurring with age (Reuter-Lorenz
and Park 2014; Kantarovich et al. 2022), paralleling the
loss of functional specialization within specific brain
regions (Cabeza et al. 2002; Park et al. 2004; Rajah and
D’Esposito 2005). These global network changes suggest
that network dedifferentiation may be a nonspecific neu-
ral marker, paralleling other gross indicators of declin-
ing brain health in later life. However, such nonspe-
cific changes may also reflect systematic, age-related
confounds in data acquisition, processing, and analytic
approaches to interrogating resting-state fMRI data (Liem
et al. 2021 for a review). The most prominent of these is
age-related differences in motion (D’Esposito et al. 1999;
Geerligs et al. 2015) that introduce spurious age-related
differences in connectivity patterns (Power et al. 2012,
2014). These and other confounds highlight the need for
rigorous denoising of resting-state fMRI data and pose
significant challenges for the field (Power et al. 2018;
Spreng et al. 2019).

In contrast to global network changes, there is growing
evidence for network-specific patterns of dedifferenti-
ation. Age-related dedifferentiation has been reported
among specific association networks (Betzel et al. 2014;
Keller et al. 2015; Ferreira et al. 2016; Ng et al. 2016; Rieck
et al. 2017; Spreng et al. 2018; Zonneveld et al. 2019;
Malagurski et al. 2020) as well as between association
and sensorimotor networks (Meier et al. 2012; Chan et al.
2014; Song et al. 2014; Seidler et al. 2015; King et al.
2018; Manza et al. 2020; Stumme et al. 2020). Among the
most commonly observed patterns of network-specific
dedifferentiation with age is reduced anticorrelation in
BOLD signal between the default and dorsal attention
networks (Geerligs et al. 2015; Ferreira et al. 2016;
Spreng et al. 2016). These canonical brain networks are
strongly anticorrelated at rest and during most tasks in
younger adults (Fox et al. 2005; Toro et al. 2008; but see
Dixon et al. 2017).

Evidence for greater integration between specific
networks hints at a role for resting-state functional
connectivity (RSFC) fMRI beyond that of a global
indicator of aging brain health. Rather, these specific
dedifferentiation patterns may serve as neural markers
of domain-specific cognitive changes in later life. Indeed,
dissociable patterns of network dedifferentiation have
been related to age differences in visuospatial ability
(Manza et al. 2020), motor functioning (King et al. 2018),
episodic memory (Andrews-Hanna et al. 2007; Chan et al.
2014; Spreng et al. 2018), processing speed (Geerligs
et al. 2015; Ng et al. 2016; Malagurski et al. 2020),
and executive functioning (Keller et al. 2015; Stumme
et al. 2020). Chan et al. (2014), provided early evidence
that network-specific dedifferentiation patterns were a
marker of domain-specific neurocognitive aging. They
observed a global pattern of network dedifferentiation

(i.e. reduced segregation) that was associated with lower
episodic memory ability. However, this relationship was
stronger for association networks than for sensorimotor
networks, showing that dedifferentiation among cortical
association networks was both a sensitive and specific
marker of age-related episodic memory decline. We
have reported similar findings, showing that age-related
increases in connectivity between the default network
and frontal regions are associated with lower fluid
cognition, as well as specific differences in the nature
and content of personal past remembrances in older
adults (Spreng et al. 2018).

These reports (and numerous others) suggest that
changes to the intrinsic network organization of the
brain can provide both global and network-specific
markers of neurocognitive aging. However, the range of
theoretical, empirical, and methodological differences
across RSFC studies, as well as numerous analytical
challenges, has precluded precise mapping of age-related
differences in network organization. Such precision is
critically necessary to develop sensitive and specific
RSFC markers of neurocognitive aging. Here, we present
an integrated, cross-method study interrogating patterns
of network dedifferentiation in a well-powered sample of
younger and older adults. We adopted three approaches
to investigate dedifferentiation across multiple spatial
scales from global to edge-level age contrasts while
attempting to mitigate several of the most common
fMRI acquisition and analytical challenges. We briefly
describe each method and associated hypotheses below.
An overview schematic of our analytic approach is
presented in Fig. 1. Specific methodological details
are included in the respective Materials and methods
sections.

We first examined global network dedifferentiation
by measuring differences in spatiotemporal patterns of
BOLD signal covariance across the cortex, a measure
we refer to as BOLD dimensionality. Innovations in
multi-echo fMRI (ME-fMRI) data acquisition protocols,
combined with a TE-dependence model of BOLD signal
denoising using multi–echo-independent components
analysis (ME-ICA), enable reliable separation of BOLD
from non-BOLD (i.e. noise) signals into different compo-
nents (Kundu et al. 2017). Emerging evidence suggests
that the number of BOLD components, or BOLD dimen-
sionality, is a biologically meaningful metric, showing
declines from childhood into middle-age that reflect
greater functional integration and the development of
spatially distributed and segregated large-scale networks
(Kundu et al. 2018). While this metric has not heretofore
been examined in older adulthood, we predicted that
BOLD dimensionality, as a proxy for global network
differentiation, will be significantly lower for older versus
younger adults, consistent with previous reports of age-
related network dedifferentiation (Betzel et al. 2014;
Chan et al. 2014; Geerligs et al. 2015; Ng et al. 2016;
Zonneveld et al. 2019; Madden et al. 2020; Malagurski
et al. 2020; Stumme et al. 2020).
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Fig. 1. Workflow of study methods. a) Processing of multi-echo resting-state fMRI images. For each functional run, three echoes (TE1, TE2, and TE3) were
combined and denoised using ME-ICA. The denoising process involved removing components with non-BOLD signal (noise) and retaining the BOLD
components. MEFC images are made up of the BOLD component coefficient sets. b) Individualized parcellations were generated. The MEFC data for all
participants were resampled to a common cortical surface. All participants were first initialized to a predefined cortical parcellation atlas (Schaefer
atlas). Parcellations were then refined by participant (subject-specific parcellation). For each participant, MEFC data were extracted from and correlated
with each parcel to create a subject-specific functional connectivity matrix. These matrices were used to c) compute cortical gradients in younger and
older adults and d) assess age-related differences in functional connectivity using PLS, which performs an SVD.

Second, we investigated age differences in network
dedifferentiation at the macroscale level using a dif-
fusion map embedding approach to estimate RSFC
cortical gradients (Margulies et al. 2016; Huntenburg
et al. 2018; Paquola et al. 2019; Vos de Wael et al. 2020).

Gradient mapping identifies eigenvectors that describe
transitions in regional connectivity patterns across
the cortical mantle, with a principal RSFC eigenvector
solution often differentiating sensory/motor from trans-
modal cortex (Margulies et al. 2016). As gradients are
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robust organizational features of the connectome, we
predicted that these patterns would be largely resistant
to normal age-related changes. However, changes may
emerge for regionally specific connectivity profiles
within the macroscale gradient architecture, reflecting
network- or node-specific shifts occurring within an age-
invariant macroscale network organization (Bethlehem
et al. 2020).

Third, we examined age differences in dedifferentia-
tion patterns identified with unthresholded, edge-level
connectomics using Partial Least Squares (PLS) analyses
(Krishnan et al. 2011; McIntosh and Mišić 2013). PLS
is a multivariate approach that can analyze the full
edge-level connectivity matrix in a single statistical
step, eliminating the need for additional thresholding
within an a priori defined network parcellation scheme,
enabling us to identify reliable age differences across the
full matrix. This provided edge-level precision to detect
age differences in the organization of functional brain
networks, including network-specific dedifferentiation
patterns. We first examined edge-level connectomics
within a canonical seven-network solution (Yeo et al.
2011). We predicted reduced within- and increased
between-network connectivity, as reported previously
and reviewed above. As we are not aware of any
previous studies reporting statistically reliable patterns
of unthresholded, connections, we also anticipated
that this increased, edgewise resolution would reveal
heretofore unreported age differences. Finally, based
on previous work (Spreng et al. 2013, 2016; Grady
et al. 2016), we conducted an a priori analysis of the
subnetwork topography for the default, dorsal attention,
and frontoparietal control networks, derived from the 17-
network solution by Yeo et al. (2011). Here, we predicted
lower within-network connectivity with age, reduced
anticorrelation between default and dorsal attention
networks, and greater between-network connectivity of
the frontoparietal control network with both default and
dorsal attention network regions.

Combined, these techniques provide a broad window
into the functional architecture of the human brain,
spanning from global covariance patterns across the
cortex, to precision-mapping of edge-level connections.
By implementing an integrated, multiscale analytical
approach in a well-powered sample of cognitively normal
older and younger adults, we aimed to characterize both
global and specific patterns of age differences in the
intrinsic functional architecture of the aging brain.

Materials and methods
Participants
Participants were 181 younger (Mage = 22.59 years,
SD = 3.27; 57% female) and 120 older (Mage = 68.63 years,
SD = 6.44; 55% female) healthy adults from Ithaca, New
York, and Toronto, Canada (Table 1), rendering a total
sample size of 301. Standard inclusion and exclusion
criteria were implemented to ensure that all partici-
pants were healthy, without evidence of neurological,

psychiatric, or other underlying medical conditions
known to impact brain or cognitive functioning. Specifi-
cally, participants were screened to rule out individuals
with acute or chronic psychiatric illness. Participants
were also queried for current usage of medications
for mood (e.g. depression), thinking or mental abilities
(e.g. attention deficit disorder), or having experienced
significant changes to health status within 3 months of
the eligibility interview. Younger and older participants
were screened for depressive symptoms using the Beck
Depression Inventory (Beck et al. 1996) or the Geriatric
Depression Scale (Yesavage and Brink 1983), respectively.
Two older adults were excluded due to a rating of
“moderate depression.” In order to screen for normal
cognitive functioning, participants were administered
the Mini-Mental State Examination (MMSE; Folstein et al.
1975; Myounger: 29.1; SDyounger: 1.2; Molder: 28.6; SDolder:
1.3) and NIH cognition battery (Gershon et al. 2013). If
participants performed below 27/30 on MMSE and scored
in the bottom 25th percentile of age-adjusted scores for
fluid cognition index on the NIH (Hackett et al. 2018;
Scott et al. 2019), they were excluded. All participants
were right-handed with normal or corrected-to-normal
vision. Procedures were administered in compliance with
the Institutional Review Board at Cornell University and
the Research Ethics Board at York University, including
written informed consent obtained from each study
participant.

Cognitive assessment
We first characterized our sample with a comprehensive
cognitive assessment; 283 of 301 individuals (163/181
younger adults, 120/120 older adults) underwent cog-
nitive testing prior to brain scanning. Index scores
were created for cognitive domains of episodic memory,
semantic memory, executive function, and processing
speed (descriptives in Table 1). Episodic memory tasks
included Verbal Paired Associates from the Wechsler
Memory Scale-IV (Wechsler 2009), the Associative Recall
Paradigm (Brainerd et al. 2014), and NIH Cognition
Toolbox Rey Auditory Verbal Learning and Picture
Sequence Memory Tests (Gershon et al. 2013). Semantic
memory tasks included Shipley-2 Vocabulary (Shipley
et al. 2009) and NIH Cognition Toolbox Picture Vocabulary
and Oral Reading Recognition Tests (Gershon et al. 2013).
The executive function index comprised the Trail Making
Test (B-A; Reitan 1958), the Reading Span Task (Daneman
and Carpenter 1980), NIH Cognition Toolbox Flanker
Inhibitory Control and Attention task, Dimensional
Change Card Sort, and List Sort Working Memory Tests
(Gershon et al. 2013). Processing speed was tested with
the Symbol Digit Modalities Test, Oral (Smith 1982).

All data were z-scored. Index scores represent the
average z-score for all measures included within a
cognitive domain. Across the 4 domains, higher scores
represent better performance. Brain–behavior product–
moment correlations were conducted at an alpha level
of 0.05 with 95% confidence intervals (CIs). Bonferroni
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Table 1. Sample demographics.

Descriptive statistics Inferential statistics

Younger adults Older adults T dof P 95% CI Cohen’s d

N
Cornell 154 (86 female) 84 (47 female)
York 27 (17 female) 36 (19 female)

Race 60.38% White, 19.50% Asian,
8.18% Black, 5.03% other,
4.41% mixed, 2.50% not
provided

92.38% White, 2.54% Asian,
2.54% Black, 2.54% other

Ethnicity 81.76 Non-Hispanic or Latino,
10.69% Hispanic or Latino,
7.55% not provided

89.83% Non-Hispanic or
Latino, 8.48% not provided,
1.69% Hispanic or Latino

Age (years)
Range 18–34 60–89
M 22.6 68.6
SD 3.3 6.4

Education (years)∗ −7.20 285 <0 0.001 [−2.5, −1.48] 0.86
Range 12–24 12–24
M 15.2 17.2
SD 1.9 2.9

Episodic Memory∗ 17.51 281 <0.001 [1.1, 1.38] 2.11
Range −1.75–1.59 −1.99–0.70
M 0.52 −0.71
SD 0.53 0.66

Semantic Memory∗ −9.18 281 <0.001 [−1.00, −.65] 1.10
Range −2.78–1.39 −1.29–1.91
M −0.35 0.48
SD 0.77 0.71

Executive Function∗ 12.67 281 <0.001 [0.71, 0.97] 1.52
Range −1.15–1.80 −2.03–0.76
M 0.36 −0.48
SD 0.56 0.53

Processing Speed∗ 15.03 281 <0.001 [1.17, 1.53] 1.81
Range −2.26–3.05 −2.40–.050
M 0.57 −0.78
SD 0.86 0.56

Note: Episodic memory, semantic memory, and executive function are index scores. Processing speed is a z-score on Symbol Digit Modalities Task, Oral.
∗Significant group differences. Education was not recorded for 14 participants. Age group differences in episodic memory, semantic memory, executive
function, and processing speed were tested in 283 participants. Positive T values reflect higher scores in younger adults, whereas negative values reflect
higher scores in older adults. Statistical results were nearly identical when including sex, education, site, and eWBV as covariates in an ANCOVA.

adjustments for multiple comparisons were set at
P < 0.013 for the 4 index score tests.

Neuroimaging
Image acquisition

Imaging data were acquired on a 3T GE750 Discovery
series MRI scanner with a 32-channel head coil at
the Cornell Magnetic Resonance Imaging Facility or
on a 3T Siemens Tim Trio MRI scanner with a 32-
channel head coil at the York University Neuroimaging
Center in Toronto. Scanning protocols were closely
matched across sites. Anatomical scans at Cornell were
acquired using a T1-weighted volumetric magnetization
prepared rapid gradient echo sequence (TR = 2530 ms;
TE = 3.4 ms; 7◦ flip angle; 1-mm isotropic voxels, 176
slices, 5m25s) with 2× acceleration with sensitivity
encoding. At York, anatomical scans were acquired using
a T1-weighted volumetric magnetization prepared rapid
gradient echo sequence (TR = 1900 ms; TE = 2.52 ms;
9◦ flip angle; 1-mm isotropic voxels, 192 slices, 4m26s)

with 2× acceleration and generalized auto calibrating
partially parallel acquisition (GRAPPA) encoding at an
iPAT acceleration factor of 2. Two 10m06s resting-state
runs were acquired using an ME-EPI sequence at Cornell
University (TR = 3000 ms; TE1 = 13.7 ms, TE2 = 30 ms,
TE3 = 47 ms; 83◦ flip angle; matrix size = 72 × 72; field
of view (FOV) = 210 mm; 46 axial slices; 3-mm isotropic
voxels; 204 volumes, 2.5× acceleration with sensi-
tivity encoding) and York University (TR = 3000 ms;
TE1 = 14 ms, TE2 = 29.96 ms, TE3 = 45.92 ms; 83◦ flip
angle; matrix size = 64 × 64; FOV = 216 mm; 43 axial
slices; 3.4 × 3.4 × 3mm voxels; 200 volumes, 3× accelera-
tion and GRAPPA encoding). Participants were instructed
to stay awake and lie still with their eyes open, breathing,
and blinking normally in the darkened scanner bay.

Image processing

Anatomical images were skull stripped using the default
parameters in FSL BET (Smith 2002). Brain-extracted
anatomical and functional images were submitted to
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ME-ICA (version 3.2 beta; https://github.com/ME-ICA/
me-ica; Kundu et al. 2011, 2013). ME-ICA relies on the
TE-dependence model of BOLD signal to determine T2

∗

in every voxel and separates BOLD signal from non-
BOLD sources of noise. Prior to TE-dependent denoising,
time series data were minimally preprocessed: the first 4
volumes were discarded, images were computed for de-
obliquing, motion correction, and anatomical-functional
coregistration, and volumes were brought into spatial
alignment across TEs. The T2

∗ maps were then used for
anatomical-functional coregistration. Gray matter and
cerebrospinal fluid compartments are more precisely
delineated by the T2

∗ map than by raw EPI images (Speck
et al. 2001; Kundu et al. 2017), which is an important
consideration in aging research where these boundaries
are often blurred by enlarged ventricles and greater
subarachnoid space. Volumes were then optimally
combined across TEs and denoised. The outputs of
interest included: (i) spatial maps consisting of the BOLD
components, (ii) reconstructed time series containing
only BOLD components, and (iii) the BOLD component
coefficient sets.

Image quality assessment was performed on the
denoised time series in native space to identify and
exclude participants with unsuccessful coregistration,
residual noise (framewise displacement > 0.50-mm
coupled with denoised time series showing DVARS > 1,
Power et al. 2012), temporal signal-to-noise ratio < 50,
or fewer than 10 retained BOLD-like components (see
Supplementary Fig. 1 for the group temporal signal-to-
noise map).

The denoised BOLD component coefficient sets in
native space, optimized for functional connectivity anal-
yses (Kundu et al. 2013), were used in subsequent steps.
We refer to these as multi-echo functional connectivity
(MEFC) data. Additional measures were taken to account
for variation in the number of independent components
from ME-ICA once connectivity matrices were estimated,
as detailed below. MEFC neuroimages were mapped to
a common cortical surface for each participant using
FreeSurfer v6.0.1 (Fischl 2012). To maximize alignment
between intensity gradients of structural and functional
data (Greve and Fischl 2009), MEFC data were first
linearly registered to the T1-weighted image by run. The
inverse of this registration was used to project the T1-
weighted image to native space and resample the MEFC
data onto a cortical surface (fsaverage5) with trilinear
volume-to-surface interpolation. This produces a cortical
surface map where each vertex, or surface point, is
interpolated from the voxel data. Once on the surface,
runs were concatenated and MEFC data at each vertex
were normalized to zero mean and unit variance.

Individualized parcellation

ME-fMRI processed data provide excellent reliability
and temporal signal-to-noise, sufficient for individual-
subject precision mapping (Lynch et al. 2020, 2021).
An individualized functional parcellation approach

was implemented to identify person-specific functional
network nodes (Chong et al. 2017). These individualized
parcellations were used in both the gradient and edge-
level connectivity analyses to facilitate comparisons of
RSFC between younger and older adults. Poor registration
to standardized templates may fail to capture individual
variability in functional organization of the cortex, and
these registration problems may systematically differ
across age groups (Laumann et al. 2015; Wang et al.
2015; Braga and Buckner 2017; Chong et al. 2017; Gordon
et al. 2017; Kong et al. 2019, 2021). Deriving function-
ally defined, person-specific cortical parcellations can
account for differences at the level of the individual,
thereby mitigating systematic registration biases in
between-group comparisons. Adopting an individualized
parcellation approach may also lessen the impact of
noise artifacts that can obscure small yet reliable group
differences, increasing power to detect reliable brain–
behavior associations (Kong et al. 2021).

We generated participant-specific functional parcel-
lations to examine individual differences in functional
brain network organization using the Group Prior Individ-
ual Parcellation (GPIP; Chong et al. 2017). This approach
enables a more accurate estimation of participant-
specific individual functional areas (Chong et al. 2017)
and is more sensitive to RSFC associations with behavior
(e.g. Mwilambwe-Tshilobo et al. 2019). The main advan-
tage of this approach is that the correspondence among
parcel labels is preserved across participants, while the
parcel boundaries are allowed to shift based on the
individual-specific functional network organization of
each participant—thus providing a connectivity pattern
that is shared across the population. Starting from an
initial predefined group parcellation atlas, GPIP first
refines each individual’s parcel boundaries relative to
their resting-state fMRI data. Next, the concentration
(inverse covariance/partial correlation) matrices from
all subjects are jointly estimated using a group sparsity
constraint. GPIP iterates between these two steps to
continuously update the parcel labels until convergence,
defined as no more than one vertex changing per parcel
or 20 iterations. Compared with other group-based
parcellation approaches, GPIP has shown to improve the
homogeneity of the BOLD signal within parcels and the
delineation between regions of functional specialization
(Chong et al. 2017).

We extracted MEFC data from each vertex and applied
the above parcellation across the entire cohort of 301
participants at resolutions of 200 and 400 parcels. For
each resolution, MEFC data were initialized to a group
parcellation atlas developed by Schaefer et al. (2018). We
use this cortical parcellation scheme both as the ini-
tialization reference for our individualized cortical par-
cellation maps, as well as for our edge-level connec-
tomic analyses described below. We selected the Schaefer
atlas for three reasons: (i) it is functionally derived, and
thus more closely aligned with the current study aims,
(ii) it has high spatial resolution for different levels of
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granularity (we report findings from both 400 and 200
node parcellations here), and (iii) it is among the most
commonly used cortical parcellation atlases in the lit-
erature, providing intrinsic partitioning of nodes within
Yeo 7- and 17-network solutions (used in our edge-level
connectomics analyses; Yeo et al. 2011).

Following initialization with the Schaefer parcella-
tions, the two-step iterative process was repeated 20
times to produce a final parcellation representing the
optimal partition with respect to the entire cortical
surface. We calculated homogeneity by taking the
average correlation coefficient of all pairs of vertices
in a given parcel and then averaging across all parcels.
This was repeated at each repetition to observe the
incremental change in homogeneity as the iterative
parcellation proceeded. Homogeneity was calculated
first at the participant level and then averaged across
the entire cohort for a group estimate. For a subset
of participants, some parcels from the final partition
merged into the medial wall (where no data existed) or
into parcels belonging to the contralateral hemisphere.
Because partitions likely reflect participant-specific
neurobiological variations in functional organization,
parcels assigned to the contralateral hemisphere were
allowed to retain their original group atlas labels. With
the 400-parcel resolution, parcels merging with the
medial wall occurred in 69 older adults and 35 younger
adults, averaging 2–3 parcels in these participants;
parcels migrating to the contralateral hemisphere
occurred in 62 older adults and 24 younger adults,
averaging 2–3 parcels. With the 200-parcel resolution,
parcels merging with the medial wall occurred in 18 older
adults and 10 younger adults, averaging 1 parcel in these
participants. No parcels migrated to the contralateral
hemisphere at this resolution.

Functional connectivity matrix

A connectivity matrix was constructed for each partic-
ipant according to their individualized parcel solution.
Since the MEFC data consist of ICA coefficient sets (coef-
ficient weights for each accepted component × vertex)
concatenated by run, we extracted and averaged the
MEFC data from vertices within each parcel to obtain a
parcel-level coefficient set. Connectivity was estimated
by computing the product–moment correlation between
each parcel’s coefficient set, resulting in a nparcels × nparcels

functional connectivity matrix (Ge et al. 2017). In this
approach, RSFC was calculated as the correlation of the
ICA coefficients across parcels, rather than a correlation
across BOLD signal time-series, as is typically done (see
Kundu et al. 2013). The canonical Fisher’s r-to-z transfor-
mation was then applied to normalize the distribution
of correlation values and account for variation in MEFC
data degrees of freedom, or the number of denoised ICA
coefficients (i.e. number of BOLD components), across
individuals (Kundu et al. 2013)

Z = arctanh (R) ·
√

df − 3

where R is the product–moment correlation value and df
is the number of denoised ICA coefficients. Computing
functional connectivity with approximately independent
component coefficients rendered global signal regression
unnecessary (Spreng et al. 2019). Critically, ME-ICA effec-
tively removes distance-dependent RSFC motion con-
founds from fMRI data (Power et al. 2018). As shown in
Supplementary Fig. 2 (see also Supplementary Material),
framewise displacement had a comparable impact on
younger and older adult RSFC, ruling out motion as a
potential confound in the results reported below.

Analysis
BOLD dimensionality

A unique advantage of ME-fMRI and the ME-ICA
processing framework is that BOLD- and non-BOLD-like
signals are separated into independent components. A
novel metric of “BOLD dimensionality,” the number of
BOLD components identified by ME-ICA, may then be
examined as a data-driven representation of the global
network architecture of the brain and used to investigate
changes with age (e.g. Kundu et al. 2018). We assessed
the test–retest reliability of BOLD dimensionality across
2 runs of data. Total BOLD dimensionality was then
compared between age-groups with an independent
samples t-test and an ANCOVA controlling for sex,
education, site, and estimated whole brain volume
(eWBV; sum of gray and white matter divided by total
intracranial volume, derived from FreeSurfer). To observe
the trajectory of BOLD dimensionality with increasing
age across the lifespan, BOLD dimensionality data
from an independent developmental sample (n = 51, 10
female; Mage = 21.9 years; age range, 8.3–46.2 years; see
Kundu et al. 2018 for details) were pooled with the
current data. As our sample consisted of 2 discrete
age cohorts, these additional data points were used
to properly fit a function between age and BOLD
dimensionality. To render the samples comparable and
account for differences in acquisition across datasets,
BOLD dimensionality was scaled by the number of
timepoints acquired. The relationship between age
and BOLD dimensionality was then fit to a power law
function (see Supplementary Fig. 3 for unscaled version).
Further characterization of BOLD signal dimensionality,
including associations with graph analytic measures of
participation coefficient, modularity, and segregation,
and BOLD signal dimensionality’s relationship to whole
brain RSFC are reported in Supplementary Mate-
rial (Supplementary Table 1 and Supplementary Figs 4
and 5).

Gradients and manifold eccentricity

Cortical gradients allow for a low dimensional (i.e.
macroscale) representation of functional connectivity
that demarcate transitions in whole brain functional
connectivity (Margulies et al. 2016; Huntenburg et al.
2018). Gradient map embedding has reliably demarcated
cortical transitions from unimodal to heteromodal
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cortex, visual to somatomotor cortices, among others
(Margulies et al. 2016; Bethlehem et al. 2020; Hong et al.
2020). Cortical gradients were computed using functions
from the BrainSpace toolbox (https://github.com/MICA-
MNI/BrainSpace; Vos de Wael et al. 2020), as imple-
mented in MATLAB. For each participant, the 400 × 400
GPIP functional connectivity matrix was thresholded
rowwise to the upper 10% of connections to retain only
the strongest positive connections (Margulies et al. 2016;
Hong et al. 2019). Cosine similarity was computed on the
sparse matrix to input to the diffusion map embedding
algorithm employed below, generating a matrix that
captures similarity in whole-brain connectivity patterns
between vertices (Margulies et al. 2016; Hong et al. 2019).

We then applied diffusion map embedding, a nonlinear
dimensionality manifold learning technique from the
family of graph Laplacians (Coifman et al. 2005),
to identify gradient components at the individual
participant level. Each gradient represents a low-
dimensional embedding/eigenvector estimated from a
high-dimensional similarity matrix. In the embedding
space, vertices that feature greater similarity in their
whole-brain functional connectivity patterns appear
closer together, whereas vertices that are dissimilar
are farther apart. Each embedding axis can thus be
interpreted as an axis of variance based on connectivity
pattern similarity/dissimilarity. Euclidean distance in the
embedded space is equivalent to the diffusion distance
between probability distributions centered at those
points, each of which is equivalent to a “difference in
gradient” score. The algorithm is controlled by a single
parameter α, which controls the influence of density
of sampling points on the manifold (Margulies et al.
2016). We used α = 0.5 in this study, which differentiates
diffusion map embedding from Laplacian eigenmaps,
and allows the inclusion of both global and local
relationships in the estimation of the embedded space.
An iterative Procrustes rotation was performed to align
participant-specific gradient components to a young–old
group average template and enable group comparisons.
Group contrasts were conducted using surface-based
linear models, as implemented in Surfstat (Worsley
et al. 2009; http://www. math.mcgill.ca/keith/surfstat/)
controlling for sex, education, site, and eWBV.

We calculated a metric of manifold eccentricity to
quantify the diffusivity of vertices in gradient space.
Following Bethlehem et al. (2020) and Park et al. (2021), we
summed the squared Euclidean distance of each vertex
from the whole-brain median in a 2D gradient space for
each participant. The position of a vertex in gradient
space represents a coordinate for where the vertex falls
on each gradient’s axis. The proximity of any two ver-
tices informs how similar their functional connectivity
profiles are on each gradient. The more diffuse vertices
are within a network, the more variable and dedifferenti-
ated the functional connectivity profiles. Mean manifold
eccentricity was then compared across age groups. Sta-
tistical significance was determined with nonparametric

spin-test permutation testing, which overcomes biases
in the test statistic due to the spatial autocorrelation
inherent to BOLD data (Alexander-Bloch et al. 2018). An
ANCOVA on manifold eccentricity was also conducted
controlling for sex, education, site, and eWBV.

Edge-level connectomics
Interregional functional connectivity group differences
were tested with PLS. PLS is a multivariate method that
determines the association between two sets of vari-
ables by identifying linear combinations of variables in
both sets that maximally covary together (McIntosh and
Lobaugh 2004; McIntosh and Mišić 2013). Crucially, PLS
enables whole-brain contrasts of unthresholded connec-
tivity matrices, allowing more precise mapping of edge-
wise age differences. In our analyses, one set of variables
was individual RSFC matrices, while the other set repre-
sented group assignment or individual difference metrics
(e.g. BOLD dimensionality; see Supplementary Material).

Functional connectivity was assessed at the whole-
brain level using the Schaefer atlas (Schaefer et al. 2018;
Yeo et al. 2011; 400 × 400 matrix; 200 × 200 matrix as
supplementary analysis, Supplementary Fig. 6). Moti-
vated by prior work (e.g. Grady et al. 2016; Spreng et al.
2016; Sullivan et al. 2019), we also examined RSFC
among subnetworks of the default, dorsal attention,
and frontoparietal control networks. For the subnetwork
analysis, we first reassigned each of the 400 parcels
to the corresponding network of the Yeo 17-network
solution following the mapping based on Schaefer et al.
(2018). Next, we created a matrix for the pairwise
connections between 8 subnetworks: dorsal attention
(DAN-A and DAN-B), frontoparietal control (CONT-A,
CONT-B, and CONT-C), and default (DN-A, DN-B, and
DN-C), resulting in a 192 × 192 parcel matrix. The full
17-network characterization of the 400 × 400 parcel
results, along with the 17-network and subnetwork
characterizations of the 200 × 200 matrix, can be found
in Supplementary Figs 7–9. At each level, a data matrix X
was created using all participants’ parcellated functional
connectivity matrices. The X matrix was organized such
that each row corresponded to an observation (each
participant, nested in age groups), and the cells in
each column corresponded to the unique connections
from each participant’s connectivity matrix (the lower
triangle of the matrix). The column means within
each group were calculated, and the data in X were
mean-centered. The mean-centered data were then
submitted to singular value decomposition (SVD) to
provide mutually orthogonal latent variables. Each
latent variable represents a specific relationship (e.g.
RSFC × Group) and consists of three elements: (i) a left
singular vector consisting of the weighted connectivity
pattern that optimally expresses the covariance, (ii) a
right singular vector, which represents the weights of
the study design variables and can be interpreted as
data-driven contrast weights between groups, and (iii) a
scalar singular value, which represents the covariance
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strength between the design variables (Group) and RSFC
accounted for by each latent variable. Brain connectivity
scores were calculated by taking the dot product of the
left singular vector and each participant’s RSFC matrix.
A brain connectivity score, therefore, represents a single
measure of the degree to which a participant expresses
the connectivity pattern captured by a given latent
variable.

All PLS latent variables were statistically evaluated
using permutation testing. Rows of X were randomly
reordered and subjected to SVD iteratively, as described
above. This was done 1000 times to create a distribution
of singular values under the null hypothesis of no exist-
ing relationships between X and Y for the corresponding
PLS analysis: that there is no group difference in whole-
brain (or sub-network) RSFC. A P-value was computed
for each latent variable as the proportion of permuted
singular values greater than or equal to the original
singular value. Critically, permutation tests involve the
entire multivariate pattern and are performed in a single
analytic step, so correction for multiple comparisons is
not required (McIntosh and Lobaugh 2004).

Bootstrap resampling was used to estimate the relia-
bility of weights for each RSFC edge. Participants were
randomly resampled (rows in X) with replacement while
respecting group membership. The matrix was subjected
to SVD and the process was repeated 1000 times, gen-
erating a sampling distribution for the weights in the
singular vectors. To identify individual connections that
made a statistically significant contribution to the overall
connectivity pattern, we calculated the ratio between
each weight in the singular vector and its bootstrap-
estimated standard error. Bootstrap ratios are equivalent
to z-scores if the bootstrap distribution is approximately
unit normal (Efron and Tibshirani 1986). Bootstrap ratios
were thresholded at values of ±1.96, corresponding to the
95% CI.

Network-level contributions

PLS analyses identified interregional connectivity pat-
terns that differed by group and/or covaried with
individual difference metrics. For each of these analyses,
network-level effects were also examined. To quantify
the network-level contributions to the PLS-derived
functional connectivity pattern, two separate weighted
adjacency matrices were constructed from positive and
negative RSFC weights. For both matrices, nodes repre-
sent parcels defined by the individual parcellation, while
edges correspond to the thresholded bootstrap ratio of
each pairwise connection. Network-level functional con-
nectivity contributions were quantified by assigning each
parcel according to the network assignment reported by
Yeo et al. (2011), and taking the average of all connection
weights in a given network, thereby generating a 7 × 7
matrix (17 × 17 matrix for the 17-network solution; and
an 8 × 8 matrix when examining the default, dorsal
attention, and frontoparietal control subnetworks). The
significance of mean within- and between-network

connectivity was computed by permutation testing.
During each permutation, network labels for each node
were randomly reordered and the mean within- and
between-network connectivity was recalculated. This
process was repeated 1000 times to generate an empirical
null sampling distribution that indicates no relationship
between network assignment and connectivity pattern
(Shafiei et al. 2019). The significance of the pairwise
connections to the network matrix was determined by
estimating the proportion of times the value of the
sampling distribution was greater than or equal to the
original value.

Spring-embedded plots

Spring-embedded plots were rendered from group aver-
age matrices of RSFC data using Pajek software (Mrvar
and Batagelj 2016). Sparse matrices containing the top
5% of positive connections were entered into Pajek. The
plotting of positive edge weights with similar thresholds
to those applied in prior investigations of healthy aging
(Chan et al. 2014; Geerligs et al. 2015) permits direct
comparison to prior results. A partition was assigned
based on the Yeo 7- or 17-network solution (Yeo et al.
2011) to optimize community (i.e. network) structure for
visualization.

Data availability
All data from the current report are open access and pub-
licly available (see Spreng et al. 2022, for data descriptor).
Demographic and behavioral data are available within
the Open Science Framework project “Goal-Directed
Cognition in Older and Younger Adults” (http://osf.io/
yhzxe/); neuroimaging data are available on OpenNeuro
(https://openneuro.org/datasets/ds003592).

Results
To interrogate the intrinsic functional architecture
of the aging brain, we implemented a multifaceted,
multiscale data acquisition and analysis protocol in
younger and older healthy adults (see Fig. 1 and Materials
and methods). To identify global patterns of network
dedifferentiation with age, we first assessed age dif-
ferences in the dimensionality of the ME-fMRI BOLD
signal as output from ME-ICA. Next, we examined
network-specific dedifferentiation patterns, contrasting
macroscale gradients and edge-level network connec-
tomics between younger and older adults. At each
turn, we examined associations between network
organization and cognitive functioning for younger
and older adults. Brain and behavior associations for
each analysis are reported in Supplementary Materials
(Supplementary Tables 2–4; Supplementary Figs 10 and
12). All results are reported with covariates of site, sex,
education, and eWBV where appropriate.
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Fig. 2. BOLD signal dimensionality. a) High test–retest reliability across two ME-fMRI runs. b) Violin plots show the distributions of total BOLD signal
dimensionality across runs in younger and older adults. c) Scatter plot showing BOLD signal dimensionality by age with a power distribution and
95% CIs overlaid. Points in white were contributed by Kundu et al. (2018). Adjusted BOLD signal dimensionality = Total number of accepted BOLD
components/number of time points acquired.

BOLD dimensionality
Two 10-min runs of resting-state ME-fMRI were collected.
BOLD dimensionality, the number of independent BOLD
components in ME-fMRI signal, was stable across runs
(r(299) = 0.79, P < 0.001 [0.75, 0.83]; Fig. 2a). Younger adults
showed greater BOLD dimensionality than older adults
(t(299) = 15.38, P < 0.001; Cohen’s d = 1.81; Fig. 2b). This
remained true when covariates of site, sex, education,
and eWBV were included (F(1,281) = 97.07, P < 0.001;
ηp

2 = 0.26). In the context of lifespan development,
which included an additional sample aged 8–46 (Kundu
et al. 2018), a power function provided a suitable
fit between age and BOLD dimensionality (R2 = 0.547;
Fig. 2c). BOLD dimensionality associations with cog-
nition are reported in Supplementary Tables 2–4 and
Supplementary Fig. 10a.

Gradient analyses
We next characterized macroscale gradients of RSFC
(e.g. Margulies et al. 2016; Hong et al. 2019) in younger
and older adults. In both groups, the principal gradient
ran from sensory and motor regions toward transmodal
systems such as the default network (Fig. 3a), suggest-
ing that macroscale functional organization of the cor-
tex is generally preserved with age. However, regional
age differences in this topographic organization emerged
(FWE P < 0.05; cluster defining threshold P < 0.01; Fig. 3a).
Cortex-wide age group comparisons on the principal gra-
dient revealed higher gradient values in the right supe-
rior parietal lobule and somatosensory cortex, but lower
values in occipital and ventral temporal regions for older
adults.

A difference between visual and sensory/motor net-
works with respect to cortical gradient organization was
also evident when examining the second gradient. As
in prior studies (e.g. Margulies et al. 2016), the second
gradient differentiated visual from somatomotor cortices
in both groups (Fig. 3b). However, cortex-wide between-
group comparisons revealed subtle differences in this
topography. In particular, we observed increased gradient
values in the temporoparietal junction in older compared
with younger adults, together with decreased values in
a segment of the superior parietal lobule/intraparietal
sulcus. These results show that regions along the second
gradient axis also shift their connectivity profiles with
advancing age, again with shifts observed in sensory/
visual regions.

Finally, we rendered principal-second gradient man-
ifold scatterplots in a 2D gradient embedding space in
younger and older adults (Fig. 3c). Older adults showed
more diffuse and, thus, dedifferentiated vertices. We
quantified this diffusivity by calculating manifold eccen-
tricity—the sum of Euclidean distance across all vertices
from the median—for each participant and compared
across groups. Results revealed significantly greater
manifold eccentricity in older adults (t(299) = −10.74,
PSPIN < 0.01, Cohen’s d = 1.26; F(1,281) = 47.18, P < 0.001,
ηp

2 = 0.14 with site, sex, education, and eWBV covariates
included). See Supplementary Tables 2–4 and Supple-
mentary Fig. 10b for associations with behavior.

As BOLD dimensionality and manifold eccentricity
both demonstrated significant age group differences,
we conducted post-hoc product–moment correlations to
test whether these global measures of brain organization
were reliably associated. Negative correlations were
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Fig. 3. Gradients of cortical connectivity in younger and older adults. a) The mean principal gradient for younger (left) and older (center) adults,
representing an axis of functional connectivity similarity variance that ranged lowest to highest from unimodal to transmodal cortex. b) The mean
second gradient for younger (left) and older (center) adults, representing an axis of functional connectivity similarity variance that ranged lowest to
highest from visual to somatomotor cortex. Older adults > younger adults contrasts revealing statistically significant clusters at FWE P < 0.05, cluster
defining threshold P < 0.01 (a and b, right). c) Vertex-wise scatterplots representing the principal-second gradient values. This gradient manifold is
depicted for younger (left) and older (right) adults. Scatterplot colors indicate functional networks as per the 7-network solution by Yeo et al. (2011).
VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral attention, LIM = limbic, FPC = frontoparietal control, DN = default.

observed in both younger (r(179) = −0.575, P < 0.001,
[−0.66, −0.47]) and older adults (r(118) = −0.255, P < 0.005,
[−0.42, −0.08]), such that higher BOLD dimensionality
was related to less diffuse, more compact vertices
in the manifold. In computing a partial correlation
controlling for age, the relationship remained when
performed on the full sample (Pr(298) = −0.391, P < 0.001,
[−0.48, −0.29]). Nonoverlapping 95% CI indicated a
significantly more negative correlation in younger adults.
Results were similar when repeated with covariates
(young: Pr(161) = −0.45, P < 0.001, [−0.53, −0.36]; old:
Pr(113) = −0.23, P < 0.05, [−0.35, −0.11]; full sample:
Pr(280) = −0.34, P < 0.001, [−0.44, −0.23]), although CIs
overlapped between groups. Supplementary Figure 11
illustrates the relationship in each age group.

Edge-level connectomics
We next examined edge-level, interregional func-
tional connectivity differences between younger and
older adults. Group mean connectivity matrices are in
Fig. 4a and b. Qualitative differences in the top 5% of
positive connections between groups can be observed
with a spring-embedded layout arranged by network
membership (Fig. 4c and d). The spring-embedded plot
suggests more integration of the dorsal attention and
frontoparietal control networks in older adults.

PLS (whole brain)

Age-related differences in the 79,800 interregional
connections (i.e. the lower triangle of the 400 × 400
functional connectivity matrix) were quantitatively
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Fig. 4. Functional connectomics in younger and older adults. Mean RSFC for the 400-parcellated data in a) younger and b) older adults. Spring-embedded
plots with a 7-network solution (5% edge density) of the mean correlation matrices for c) younger and d) older adults. Nodes that are highly functionally
correlated with one another are grouped closer together. e) Multivariate PLS analysis was used to identify age-related differences in RSFC between
younger and older adults. Red color indicates significantly greater RSFC in younger adults, and blue color indicates significantly greater RSFC in older
adults. f and g) Network contributions represent the summary of significant positive and negative edge weights within and between networks in younger
f) and older g) adults. The mean positive and negative bootstrap ratios within and between networks are expressed as a P-value for each z-score
relative to a permuted null model. Higher z-scores indicate greater connectivity than predicted by the null distribution. VIS = visual, SOM = somatomotor,
DAN = dorsal attention, VAN = ventral attention, LIM = limbic, FPC = frontoparietal control, DN = default.

assessed with PLS. A significant latent variable (per-
muted P < 0.001) revealed a pattern of age differences
in RSFC, with increases and decreases observed across
the connectome (Fig. 4e). Network contribution analysis
of within- and between-network edges revealed sig-
nificant age effects. Older adults demonstrated lower
within-network connectivity across all 7 networks
and lower connectivity between limbic, frontoparietal
control, and default networks (Fig. 4f). Older adults
showed greater between-network connectivity across
systems for the visual and somatomotor networks
(Fig. 4g). The overall pattern of age-related differences
was similar when examined with a 200 parcella-
tion scheme (Supplementary Fig. 6). Brain connectiv-
ity scores’ association with cognition is reported in
Supplementary Tables 2–4 and Supplementary Fig. 12.

PLS (subnetwork)

In an a priori, targeted subnetwork analysis, we exam-
ined age-group differences in functional connectivity
among subnetworks of the default, dorsal attention,
and frontoparietal control networks. The mean age-
group subnetwork matrices are shown in Fig. 5a and b.
The spring-embedded representation of the top 5%
of positive connections in each group (Fig. 5c and d)
suggests that older adults show more integration of
the default network (DN-A) and frontoparietal control
network (CONT-C).

Quantitative comparison with PLS of the interregional
functional connectivity revealed a distinct pattern of age
differences (permuted P < 0.001; Fig. 5e). Younger adults
(Fig. 5f) showed more within-network connectivity.
Between-network connections were also seen in the
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Fig. 5. Functional connectivity of the default (DN), dorsal attention (DAN) and frontoparietal control (CONT) subnetworks following the Yeo 17-network
solution. Mean group connectivity in a) younger and b) older adults. Spring-embedded plots (5% edge density) of the mean correlation matrices for c)
younger and d) older adults. Nodes that are highly functionally correlated with one another are grouped closer together. e) Differences in RSFC between
younger and older adults among DAN, CONT, and DN. f and g) Network contributions represent the summary of positive and negative edge weights
within and between networks in younger f) and older g) adults.

young for CONT-A and CONT-B, and between DN-A
to DN-B and DN-C. Between-network connections in
the young were also observed for CONT-B and DN-B.
Older adults (Fig. 5g) showed greater between-network
connectivity of the dorsal attention network with
frontoparietal control and default networks (DAN-A to
CONT-B and CONT-C; DAN-B to CONT-B, CONT-C, DN-
A, and DN-B), as well as greater frontoparietal control
connectivity with the default network (CONT-A to DN-
A; CONT-B to DN-C; CONT-C to DN-B). Older adults
also showed greater connectivity among frontoparietal
control subnetworks (CONT-A to CONT-C; CONT-B to
CONT-C). A similar pattern of connectivity was observed
with a 200 parcellation scheme (Supplementary Fig. 9).
Subnetwork brain connectivity scores’ associations with
cognition are reported in Supplementary Tables 2–4 and
Supplementary Fig. 12.

Connectomics site replication
To verify that our edge-level results were robust and
replicable, and not confounded by potential overfitting
of the PLS model, the full and subnetwork PLS analyses
were conducted only on the Ithaca sample. Brain
connectivity scores were then computed from the
Ithaca sample-derived weights and the Toronto sample
individual-subject RSFC matrices and compared between
groups. Age group differences were replicated in the
held out Toronto sample (t(61) = 6.42, P < 0.001, Cohen’s
d = 1.63; F(1,57) = 21.13, P < 0.001, ηp

2 = 0.27 with sex,
education, and eWBV covariates included). In the subnet-
work analysis, age group differences were also replicated
in the held out Toronto sample (t(61) = 7.01, P < 0.001,
Cohen’s d = 1.79; F(1,58) = 24.16, P < 0.001, ηp

2 = 0.29
with sex, education, and eWBV covariates included).
These site replication analyses (Supplementary Fig. 13)
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demonstrate that the PLS results were robust to potential
issues of model overfitting and that the edge-level effects
of functional brain aging observed in the Ithaca sample
were also observed at the Toronto site.

Cognition
Overall, predicted age-group differences in cognition
were observed. Younger adults performed better on
indices of episodic memory (t(281) = 17.51 P < 0.001;
Cohen’s d = 2.11), executive function (t(281) = 12.67,
P < 0.001; Cohen’s d = 1.52), and processing speed (t(281) =
15.03, P < 0.001; Cohen’s d = 1.81). Older adults had
higher semantic memory index scores (t(281) = 9.18,
P < 0.001; Cohen’s d = 1.10; see Table 1). Effects remained
when testing for age group differences with ANCO-
VAs controlling for site, sex, education, and eWBV
(episodic: F(1,277) = 194.07, P < 0.001, ηp

2 = 0.41; semantic:
F (1,277) = 37.55, P < 0.001, ηp

2 = 0.12; executive function:
F(1,277) = 132.70, P < 0.001, ηp

2 = 0.32; and processing
speed: F(1,277) = 97.21, P < 0.001, ηp

2 = 0.26).
Associations between cognition and BOLD signal

dimensionality, manifold eccentricity, and brain con-
nectivity scores from the whole brain and subnetwork
analyses were examined (See Supplementary Tables 2–
4 and Supplementary Figs 10, 12, and 14). While several
significant brain–behavior associations were observed,
all of these fell below statistical significance thresholds
after site was added as a covariate in the models.

Discussion
Brain aging is marked by dedifferentiation in patterns
of brain activity and functional connectivity. Here, we
adopted a comprehensive, multimethod approach to
examine patterns of intrinsic network dedifferentiation
across multiple spatial scales. Specifically, we applied
novel methods to identify global, macroscale gradient,
and edge-level differences in RSFC between younger
and older adults. BOLD dimensionality, the number
of BOLD (i.e. non-noise) components in the ME-fMRI
signal, was lower for older adults, signaling a global shift
toward dedifferentiated brain networks in older age. In
contrast, the organization of macroscale connectivity
gradients was largely preserved with age. However,
regional and global differences in connectivity gradients
did emerge. Edge-level, multivariate analyses with PLS
also revealed regional and network-specific patterns
of dedifferentiation in older adulthood. Across the full
cortical connectome, visual and somatomotor regions
were more functionally integrated with other large-
scale networks for older versus younger adults. In a
targeted, subnetwork analysis including default, dorsal
attention, and frontoparietal control networks, older
adults showed greater default-executive coupling and
reduced anticorrelation between default and dorsal
attention networks. By examining age differences in the
functional connectome across multiple spatial scales,
we revealed that the intrinsic network architecture

of the aging brain is marked by both global as well
as topographically discrete, network-specific patterns
of functional dedifferentiation. The findings provide
evidence for both global and network-specific patterns
of dedifferentiation, laying the foundation for future
studies examining alterations in RSFC as putative
sensitive and specific markers of neurocognitive aging.

BOLD signal dimensionality and global network
dedifferentiation
Dimensionality in the BOLD signal was significantly
lower for older versus younger adults, reflecting a
generalized pattern of network dedifferentiation con-
tinuing into later life. This finding builds upon an earlier
report of cross-sectional dimensionality reductions from
adolescence to early and middle adulthood (Kundu
et al. 2018; Fig. 2). Reductions in dimensionality in early
adult development, largely attributable to functional
integration among prefrontal and other transmodal
cortices, reflect the transition from local connectivity
to longer range connections and the formation of
spatially distributed yet intrinsically coherent brain
networks (Kundu et al. 2018). The shift in functional
brain organization parallels cognitive development over
this period, which is marked by the emergence of more
integrative and complex cognitive functions (Zelazo and
Carlson 2012), and is also evident within the structural
connectome (Park et al. 2021).

Declines in the dimensionality of the BOLD signal,
which begin in adolescence, continue unabated through-
out adulthood and into later life. In younger adults, lower
dimensionality reflects greater functional integration
and the emergence of large-scale brain networks (Kundu
et al. 2018). However, our observation of continued
reductions in BOLD signal dimensionality into older
adulthood suggests that network integration may reach
an inflection point in middle age (Zonneveld et al. 2019).
After this point, continued reductions in dimensionality
may no longer be driven by network integration, but
rather by global network disintegration, and associated
loss of coherent network components in the BOLD
signal. Critically, our findings using this novel metric of
BOLD signal dimensionality are consistent with earlier
reports of age-related decreases in network modularity
(Geerligs et al. 2015) and network segregation (Chan
et al. 2014). Indeed, these measures are reliably and
positively correlated with dimensionality in our sample
(see Supplementary Table 1). However, unlike these two
graph analytic measures of network organization, BOLD
signal dimensionality is agnostic with respect to the
selection of cortical parcellation schemes, network
definitions, or specific network metrics. As such, we
suggest that dimensionality may serve as a useful, data-
driven marker of functional brain health in later life. An
important next step in this regard will be to improve our
mechanistic understanding of dimensionality reductions
with age. Such global shifts may result from systemic
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structural, neurophysiological, metabolic, or cerebrovas-
cular changes known to occur with advancing age (e.g.
Tsvetanov et al. 2020; Kantarovich et al. 2022).

Finally, as a novel metric applied to a healthy aging
sample, we acknowledge that there are important future
directions to more fully interrogate the validity and appli-
cability of BOLD signal dimensionality as an informative
marker of functional brain aging. Additional work is nec-
essary to conduct a validation of this metric, following
the roadmap outlined by the original validation studies
in younger and middle-aged adults (Kundu et al. 2013,
2017, 2018). As a physical property of T2

∗ signal decay,
the TE-dependence of BOLD signal (which drives ME-ICA
BOLD signal denoising) should be largely robust to age
differences. Directly testing this assumption will be an
important direction for future research. Taken together,
the TE-dependence of the BOLD signal as well as the
validation studies conducted in healthy younger samples
give us confidence in BOLD signal dimensionality as a
reliable, informative marker of brain aging.

Gradients and macroscale connectomics
Reductions in BOLD signal dimensionality into older age
suggest a global shift toward a dedifferentiated network
architecture. We investigated whether this global shift
may comprise more precise topographical patterns,
reflected as greater similarity in connectivity profiles
among brain regions. We tested this hypothesis by
examining macroscale connectivity gradients in younger
and older adults. While this is the first report of gradient
analyses using ME-fMRI and individualized parcellation
methods, our findings largely recapitulate connectivity
gradients observed in young adults (Margulies et al.
2016). Transitions in functional connectivity patterns
were observed from sensory/motor to transmodal
association cortices (principal gradient) and from visual
to somatomotor cortices (second gradient). This gradient
architecture was similar for young and old, suggesting
that the macroscale organization of the gradients is
generally preserved with age, as has been observed
previously (Bethlehem et al. 2020). However, specific
age-related regional differences did emerge in both
gradient maps.

Age-related differences across both gradients included
regions within visual, somatomotor, and attentional
networks. Differences within these clusters suggest
a reduction in differentiation with respect to their
corresponding gradient anchor (unimodal or transmodal
in the case of the principal gradient, somatomotor, or
visual in the case of the second gradient). Specifically,
both the superior parietal lobule, a node of the dorsal
attention network implicated in externally directed
attention and visuomotor control processes, and somato-
motor regions showed greater similarity in connectivity
profiles to transmodal regions. This is consistent with
earlier reports, and patterns observed in the present
edge-level analysis, of reduced anticorrelation between

the dorsal attention and default networks in later life
(Spreng et al. 2016).

Along the principal gradient, visual regions were
more prominently anchored along the unimodal axis in
older adults. This finding is consistent with the spring
embedding plots of RSFC (Fig. 4c and d), with more
isolated visual regions among the top 5%. This suggests
that the principal gradient in older adults is likely more
driven by the differentiation of heteromodal from visual
systems, while in the younger adults, there is a more
marked differentiation of heteromodal from somatosen-
sory/motor systems along this axis. This finding stands
in contrast to the edge-level results (discussed below)
which show greater age-related integration of visual
and somatomotor cortices with heteromodal association
regions. Importantly, gradients do not index functional
connectivity strengths per se, but rather low dimensional
patterns of RSFC between specific regions and the rest
of cortex. Thus, the shift in connectivity profiles toward
visual regions does not address functional integration of
these regions, but their weight along the gradient axis.
Thresholding the connectivity matrices before gradient
mapping may have contributed to the age-related
shift of visual cortices toward the unimodal anchor of
the first gradient. While speculative, we suggest that
this thresholding may have driven the suprathreshold
connections toward an over representation of stronger
local versus weaker long-range functional connections.
This would be consistent with relative age-related reduc-
tions in volume and integrity of long-association fiber
pathways versus local connections in primary sensory
regions (Raz et al. 2005; Kochunov et al. 2012). These
age-related structural differences would, in turn, bias
functional connectivity profiles toward more localized
patterns, yielding an age-related shift in the gradient
map toward the unimodal anchor. Nevertheless, these
findings highlight the importance and potential impact
of thresholding decisions, a point we return to in our
discussion of edge-level connectivity below.

The gradient manifold, a scatter plot of the first two
connectivity embedding gradients, represents organiza-
tion across the functional hierarchies (Fig. 3c). Manifold
eccentricity depicts the Euclidean distance of regions
from the center of the manifold and displays the
veridicality of the first against the second gradient. In
older adults, we observed greater diffusion of the vertices
in the manifold with higher levels of eccentricity. Not
limited to visual or somatosensory regions, the entire
manifold is more diffusely organized, suggesting global
dedifferentiation. This observation is consistent with
previously observed increases in manifold dispersion
across the lifespan (Bethlehem et al. 2020). This metric
of manifold eccentricity was negatively correlated with
the global measure of BOLD dimensionality, within
and across groups. Lower BOLD dimensionality, as
observed in older adults, was related to higher manifold
eccentricity, providing cross-method convergence for
global dedifferentiation.
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It is important to note that we applied diffusion map
embedding, a nonlinear dimensionality manifold learn-
ing technique from the family of graph Laplacians (Coif-
man et al. 2005). This approach is among the most widely
implemented in the literature (e.g. Margulies et al. 2016;
Hong et al. 2019; Murphy et al. 2019; Bethlehem et al.
2020; Vos de Wael et al. 2020). However, given the novelty
of gradient mapping in older adult populations, a direc-
tion for future research will be to critically evaluate the
full range of approaches as well as algorithm parameters
(Hong et al. 2020), including incorporation of repulsion
properties (Böhm et al. 2020) in the gradient analysis to
yield greater clarity regarding the segregation of discrete
networks and differences with age.

Edge-level connectomics
To more precisely investigate edge-level connectivity pat-
terns, we adopted a multivariate analytical approach. As
PLS uses SVD to test age differences across all edges
in a single analytical step, we report RSFC differences
across the full functional connectome, eliminating the
need to apply functional connectivity strength or density
thresholds. Visual inspection of the full connectomes for
younger and older adults (Fig. 4a–d) revealed a global
pattern of network dedifferentiation for older adults,
consistent with our dimensionality findings and previous
reports (Betzel et al. 2014; Chan et al. 2014; Geerligs et al.
2015; Malagurski et al. 2020; Stumme et al. 2020). These
qualitative differences were statistically validated in the
group analysis (Fig. 4e) and aggregate network matrices
(Fig. 4f and g). As predicted, younger adults showed a
robust pattern of within-network connectivity, as well
as connectivity between transmodal networks (Bullmore
and Sporns 2009; Gratton et al. 2012).

Despite preserved macroscale gradients, edge-level
analyses revealed striking age differences in network-
specific connectivity patterns. First, within-network
connectivity was lower for older adults across the
7 canonical networks investigated here. Reduced within-
network functional connectivity is a hallmark of nor-
mative aging (Damoiseaux 2017 for a review). We
speculate that degraded within-network coherence
is likely a key determinant of reduced BOLD signal
dimensionality, and global network dedifferentiation, in
older adulthood. In addition to lower within-network
coherence, edge-level analyses also revealed 3 distinct,
network-specific dedifferentiation patterns. The most
striking of these revealed greater integration of visual
and somatomotor regions with all other networks for
older adults (Fig. 4g). Functional integration of visual and
somatosensory regions has been observed previously.
Chan et al. (2014) reported reduced segregation of
visual cortices from other brain networks, although
this was not explicitly quantified in their analyses.
Similarly, age-related increases in node participation, a
graph analytic marker of functional integration, were
limited to visual and somatosensory networks in a large
study of age differences in RSFC (Geerligs et al. 2015).

Furthermore, Stumme et al. (2020) reported that age
differences in RSFC were most prominent in visual
and somatosensory cortices. While previous studies
reported patterns of sensorimotor integration with
age, these have not gained prominence as a central
feature of functional brain aging. As discussed above
with regards to the gradient analysis results, statistical
thresholding of the gradient matrices might significantly
impact these findings. Threshold-based approaches
highlight age-related differences among the most robust
connections, often associated with heteromodal cortices,
potentially obscuring less robust age differences in other
networks. This is particularly evident in our findings,
where somatomotor and visual networks show small
age differences relative to those observed for association
networks in the thresholded, spring-embedded plots
(Fig. 4c and d). In contrast, analysis of the unthresholded
matrices revealed the integration of sensorimotor
networks to be among the most striking features of the
aging connectome (Fig. 4e–g).

Our findings of greater visual network integration
parallel task-based studies identifying greater top-down
modulation of sensory association cortices by trans-
modal regions as a central feature of functional brain
aging (Alain et al. 2022). Greater activation of transmodal
cortices, in the context of age-related declines in the
fidelity of sensory signaling, has been interpreted as
increased demand for top-down modulation of early
sensory processing (Payer et al. 2006; Clapp et al. 2011; Li
and Rieckmann 2014; Spreng and Turner 2019b). Indeed,
sensory declines and motor slowing account for much of
the individual variability in cognitive functioning among
older adults (Salthouse 1996; Baltes and Lindenberger
1997). This suggests that greater modulation of these
primary sensorimotor regions (and visual attention
and visuomotor control regions of the superior parietal
lobule, see “Gradient analyses” above) may be necessary
to sustain complex thought and action in later life (Alain
et al. 2022). While beyond the scope of the current
study, we speculate that such task-driven demands for
greater cross-talk between transmodal and sensorimotor
cortices may, in turn, shape the intrinsic functional
architecture of these networks in older adulthood
(Stevens and Spreng 2014).

We also conducted a targeted analysis of edge-level
age differences in the default, dorsal attention, and
frontoparietal control networks. Previous work has
demonstrated that these networks interact during goal-
directed cognitive tasks (Spreng et al. 2010; Dixon et al.
2018; Murphy et al. 2020), show similar connectivity
profiles during both task and rest (Spreng et al. 2013),
and undergo significant changes into older adulthood
(Grady et al. 2016; Ng et al. 2016; Sullivan et al. 2019).
For this a priori analysis, we adopted the subnetwork
topography for the 3 networks derived from the 17-
network solution (Yeo et al. 2011). This enabled us to
investigate age-related changes with greater precision.
Importantly, as we observed for the full connectome
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analysis, the thresholded spring-embedded plots (Fig. 5c
and d) failed to reveal the robust age differences in
connectivity among default, dorsal attention, and fron-
toparietal control network regions that emerged from
the edge-level analyses (Fig. 5e–g). While the predicted
pattern of reduced within-network connectivity was
recapitulated across the subnetworks, we observed two
additional network-specific dedifferentiation patterns.
As predicted, there was greater age-related coupling
of default and frontal brain regions, a pattern we
have described as the Default to Executive Coupling
Hypothesis of Aging (DECHA; Turner and Spreng 2015;
Spreng and Turner 2019a). This pattern did not emerge
in the 7 network analysis (Fig. 4). However, when applied
to the edge-level subnetwork matrices (Fig. 5e–g), a clear
DECHA pattern emerged for CONT-A to DN-A, CONT-B to
DN-C, and CONT-C to DN-B subnetworks (Fig. 5g). While
we did not identify reliable associations with cognition
here, we have posited that this dedifferentiation pattern
may reflect the shifting architecture of cognition in later
life (Turner and Spreng 2015; Spreng et al. 2018) with both
adaptive and maladaptive consequences for cognitive
aging (Spreng and Turner 2019a).

A second dedifferentiation pattern emerged in this
subnetwork analysis. Older adults showed greater con-
nectivity between the dorsal attention and the two other
association networks. This pattern was particularly pro-
nounced for the DAN-B subnetwork which includes the
superior parietal lobule. Previous reports have shown
reduced anticorrelation between dorsal attention and
default networks (Keller et al. 2015; Spreng et al. 2016) in
older adulthood. These edge-level findings also converge
with our gradient analyses where the superior parietal
lobule, a node of DAN-B, showed an age difference in con-
nectivity gradients, with a functional connectivity profile
more similar to that of other transmodal regions. The
DAN-B subnetwork encompasses regions of the putative
frontal eye fields and precentral gyrus implicated in top-
down, or goal-directed, attentional control. This is again
consistent with a neuromodulatory account of neurocog-
nitive aging, wherein greater allocation of attentional
resources may be engaged to sharpen perceptual repre-
sentations in later life (Li et al. 2006; Li and Rieckmann
2014; Alain et al. 2022). Future research will be neces-
sary to directly test these hypotheses, linking network-
specific patterns of dedifferentiation to domain-specific
cognitive changes.

Cognitive function
Our findings suggest that both global and network-
specific dedifferentiation are core features of the func-
tional aging connectome. In a final series of analyses,
we investigated whether these network changes were
associated with cognitive functioning. We observed
significant behavioral correlations with BOLD signal
dimensionality and edge-level connectivity. Intriguingly
however, all observed associations fell below statistical
significance thresholds when site was included as a

covariate in the statistical models. This was the case
even though both brain and behavioral age effects
replicated across both sites (see Supplementary Fig. 13
and Supplementary Table 5). As a result, we do not
interpret the brain and behavior associations further
here and report all uncorrected and partial correlations
in Supplementary Tables 2–4 (see site-specific scatter
plots Supplementary Fig. 14). While we took extraordi-
nary care to match data collection protocols and core
demographics, study site encompasses many additional
moderating factors that may have influenced brain
and behavioral associations across the two sites (e.g.
socioeconomic status, see Chan et al. 2018). While
increases in statistical power enabled by multisite
investigations permit greater sensitivity to detect brain–
behavior associations, it also comes at the potential cost
of structured noise related to population differences.
Understanding these differences will also be an impor-
tant direction for future research.

Conclusion
We employed a multimethod data acquisition and anal-
ysis protocol to study functional brain aging across mul-
tiple spatial scales, with a specific emphasis on age-
related patterns of intrinsic network dedifferentiation.
Reduced BOLD signal dimensionality suggested a global,
age-related shift toward dedifferentiated network orga-
nization in older versus younger adults. Limitations of a
cross-sectional study design restrict interpretations with
respect to lifespan shifts in brain function. However,
we speculate that network integration across the adult
lifespan may include an inflection point in middle adult-
hood, beyond which network integration in early adult-
hood shifts to a pattern of network dedifferentiation, and
the dissolution of a segmented and modular network
architecture.

The methodological and analytical approaches adopted
here were selected to, at least in part, overcome several of
the most enduring and pervasive challenges in lifespan
network neuroscience. These include age-related vari-
ability in noise profiles within the BOLD signal, as well as
distortions introduced by group-wise spatial alignment
to standardized templates. Of course, these methods
cannot address the totality of confounds that complicate
RSFC analyses. Among the most critical of these is resolv-
ing, or at least accurately modeling, age differences in
neurovascular coupling. Altered neurovascular coupling
with age can introduce spurious RSFC differences that
are difficult to detect with standard imaging protocols
(Tsvetanov et al. 2020). While ME-ICA methods, which
separate neural from non-neural sources in the BOLD
signal, are a significant advance, implementation of
multimodal methods such as simultaneous arterial spin
labeling and echo-planar imaging may be necessary to
resolve this issue (Tsvetanov et al. 2020). Additionally,
residual motion-related noise was observed in the
BOLD signal, which could be attributable to respiration
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(e.g. Power et al. 2018; Lynch et al. 2020). While this
noise did not confound our age effects, its persistence
requires additional consideration and points to the need
for further advances to improve signal-to-noise with
ME-fMRI data. Despite these limitations, we suggest
that the multifaceted approach adopted here offers
a comprehensive account of age differences in the
functional network architecture of the brain, including
both novel and previously observed patterns of network
dedifferentiation and integration. Taken together, these
findings add further clarity and precision to current
understanding of how functional networks are formed,
shaped, and shifted into older adulthood.

Supplementary material
Supplementary material is available at Cerebral Cortex
Journal online.
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