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Comprehensive Summary  
 
The idea that the brain is composed of multiple large-scale networks has steadily gained traction 
in cognitive neuroscience over the past decade. Still, the field has not yet reached consensus on 
key issues regarding terminology. The Workgroup for HArmonized Taxonomy of NETworks 
(WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-
endorsed best practices committee to provide concrete recommendations and reporting 
guidelines for the scientific community. WHATNET members spent the last two years engaging 
in regular discussions, conducting a survey to catalog current practices in large-scale network 
nomenclature, identifying barriers to progress, and brainstorming ways in which tools could be 
developed to help standardize reporting in future studies. Here we summarize these activities and 
make initial recommendations for the network neuroscience community, noting open questions 
and controversies that require further empirical and theoretical investigation.  
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Abstract 
 
Progress in scientific disciplines is often accompanied by the standardization of terminology and 
nomenclature. Network neuroscience, as applied at the level of macro-scale organization of the 
brain, has emerged over the past decade from interdisciplinary collaborations. The field is only 
beginning to confront the challenges associated with developing and refining a taxonomy of its 
fundamental explanatory constructs. Despite initial attempts, there is currently a lack of 
consensus around basic questions such as “What constitutes a brain network”?, “Are there 
universal and reproducible brain networks that can be observed across individuals”? and “What 
naming and reporting conventions could be adopted to facilitate cross-laboratory 
communication?” The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was 
formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed committee on 
best practices in large-scale brain network nomenclature. The objective is to provide concrete 
reporting recommendations similar to those produced by the Committee on Best Practices in 
Data Analysis and Sharing (COBIDAS) and the magneto- and electroencephalography best 
practices committee. A working group was formed of cognitive and network neuroscientists, 
engineers, and philosophers who are actively engaged in research examining functional and 
structural brain networks using a range of neuroimaging modalities. The goal of WHATNET is 
to provide recommendations on points of consensus, identify open questions, and highlight areas 
of debate in the scientific community. The committee conducted a Qualtrics survey that was 
circulated by the OHBM executive office and advertised on Twitter to catalog current practices 
in large-scale brain network nomenclature. As expected, a few well-known network names (eg. 
default network) dominated responses to the survey. However, a number of interesting and 
illuminating points of disagreement emerged as well. The goal of this initiative is to move the 
field towards providing clear criteria and developing tools to aid in standardization of reporting 
network neuroscience results. Here we summarize survey results, discuss considerations, and 
provide initial recommendations from the workgroup. In doing so, we discuss multiple 
challenges to this enterprise, including: 1) network scale, resolution, and hierarchies; 2) inter-
individual variability of networks; 3) consideration of network affiliations of subcortical 
structures; 4) consideration of multi-modal information, and 5) dynamics and non-stationarity of 
networks. We close with a set of minimal reporting guidelines that we urge the cognitive and 
network neuroscience communities to adopt while awaiting more concrete recommendations that 
we anticipate will be forthcoming from this group. 
 
 
Keywords: brain network, cognitive neuroscience, diffusion weighted imaging, functional 
connectivity, network neuroscience, parcellation, resting state fMRI, structural connectivity, 
EEG, MEG 
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1. Definitions and scope: What is a “large-scale brain network”?  
 

The standardization of terminology and nomenclature is an essential element of progress 
in any scientific endeavor. In the field of network neuroscience, the most fundamental 
nomenclature rests on the definition of a brain network itself. In this rapidly evolving field, there 
is a need to define the scale at which brain networks are being examined. Neuroimaging has 
focused on the macroscale relationships between brain regions in defining networks and their 
interactions. This scale emerges in part by virtue of data acquisition parameters, which limit 
resolution to levels predominantly lower than a cubic millimeter. This manuscript will focus on 
networks at this spatial scale, using the term “large-scale brain network” to refer to what have 
variably been called “resting state networks”(1), “intrinsic connectivity networks” (2), or 
“functional brain networks” (3) in the literature describing coherent brain signal fluctuations 
recorded with non-invasive neuroimaging. 

One of the key issues in defining networks is that the very notion has different meanings 
across scientific domains and even subfields within cognitive neuroscience and neuroimaging. 
The term ‘network’ has been used to refer to patterns of co-activation, spatial patterns of coupled 
signals derived from multivariate analyses (e.g., independent component analysis, ICA), or a 
distributed pattern of brain regional activation. In network science, however, the term network is 
defined unambiguously. Specifically, it is used to refer to a collection of nodes and edges: nodes 
represent the fundamental units of a system and edges represent their pairwise interactions. This 
definition is compatible with some, but not all, of the definitions used in neuroimaging. Namely, 
it agrees with network or graphical models of the brain, wherein nodes correspond to discrete 
neural elements (e.g. cells, neuronal populations, brain areas), and edges correspond to structural, 
functional, and effective connections. However, the precise way in which networks are defined 
given such a model are highly variable, and can lead to varying and sometimes inconsistent 
definitions of specific brain networks.  

The field of large-scale network neuroscience is only beginning to confront the 
challenges associated with developing and refining a taxonomy of relevant entities. At present, 
the field lacks consensus around basic questions such as “What constitutes a large-scale brain 
network”? “Are there reliable networks that can be observed in the brains of all individuals”? 
And “what reporting conventions should be adopted to facilitate cross-laboratory 
communication?” One can see that these questions are somewhat philosophical in nature, and are 
often assumed by researchers to have converged on greater consensus than the literature 
suggests. Take, for example, the output of a PubMed search for the term “default network”, 
which includes over 8,000 articles. The term “default mode” of brain function was introduced 
into the lexicon by Raichle and colleagues in 2001, who used positron emission tomography to 
measure brain oxygen extraction. They reported that medial prefrontal cortex (MPFC), posterior 
cingulate cortex (PCC) and lateral parietal and temporal cortices consistently decreased their 
activity across a range of cognitive paradigms compared with rest (4,5). Greicius and colleagues 
used resting state (6) functional magnetic resonance imaging (fMRI) a few years later to examine 
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functional connectivity among these task “deactivated” brain regions, conducting the first 
network analysis of the default mode hypothesis (7). It was this 2003 study that first introduced 
the term “default mode network”, which has in subsequent work often been shortened to “default 
network” (8). Even a cursory glance at the multitude of topographical depictions of this 
commonly-studied large-scale brain network reveals that, although there is a strong intuition that 
we “know it when we see it” in functional neuroimaging data, precise definitions of what 
constitutes the network in terms of critical nodes, affiliated brain regions, estimation of regional 
interactions, and other quantitative descriptors are often missing from published reports. To 
further complicate matters, the somewhat common division of the default network into 
subnetworks (9–11) illustrates issues surrounding network scale, resolution, and hierarchies - a 
topic we will return to later in the discussion. These subnetworks partially overlap in spatial 
extent, although the precise separation and extent of spatial overlap depends on the analytic 
method used. For example, spatial ICA (sICA) at high dimensionality can be used to fractionate 
the default network into anterior and posterior subsystems (12). In contrast, hierarchical 
clustering of interregional resting-state correlations dissociates medial temporal lobe and dorsal 
MPFC subsystems of the default network (10). Whether or not the results from fractionating a 
larger network should be considered subnetworks or proper networks themselves illustrates the 
complexity of developing standardized network definitions. 

Appropriate methods for defining and characterizing brain networks in neuroimaging 
data have been discussed and debated for over twenty-five years (13). Recently, a draft network 
taxonomy rooted in anatomical terminology was proposed, delineating six canonical networks 
labeled “occipital”, “pericentral”, “dorsal frontoparietal”, “lateral frontoparietal”, “midcingulo-
insular”, and “medial frontoparietal” (14). This focus on anatomy was intended to move away 
from functional names that are commonly assigned to specific networks (e.g., default, executive 
control, salience) which may only be appropriate in certain psychological contexts and which can 
lack anatomical precision. The proposal acknowledged that the draft network taxonomy provided 
an incomplete characterization that should be refined in future iterations through a dedicated 
working group. Pursuant to this, the Organization for Human Brain Mapping (OHBM) 
Committee on Best Practices instantiated the Workgroup for HArmonized Taxonomy of 
NETworks (WHATNET), comprising the current authors. The current manuscript represents this 
work-in-progress, providing an update and further considerations for building a consensus 
network terminology.  

One consideration that is germane to this topic is whether we consider one particular 
neuroimaging modality (e.g., resting state fMRI, task-based fMRI, diffusion MRI (dMRI), 
electroencephalography (EEG)) to be the most relevant from which to search for empirical 
support for a given network taxonomy proposal. After months of deliberation, the WHATNET 
committee decided that a truly universal taxonomy should encompass all relevant findings from 
multiple neuroimaging modalities, highlighting points of maximal multimodal convergence 
where appropriate. Still, as the vast majority of the current human connectomics literature has 
focused on brain networks derived from fMRI data, the findings from this imaging modality are 
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likely to dominate the discussion, with structural and electrophysiological neuroimaging 
modalities considered as complementary approaches at this time (see Section 3.D: Beyond 
fMRI). This balance may shift with future advances in neuroimaging technologies and their 
adoption in network neuroscience research. In the current work, we take the precedent set by the 
original Committee on Best Practices in Data Analysis and Sharing (COBIDAS) effort that 
focused first on fMRI reporting guidelines (15) and later expanded to include EEG and 
magnetoencephalography (MEG) (16). We discuss considerations for network neuroscience 
research primarily in the fMRI domain and present initial guidelines for reporting results. We 
expect that these best practices will be updated and expanded to other modalities in future 
iterations.  
 

2. Summary of OHBM survey results and implications  
  

 In 2021, WHATNET conducted an online survey of the OHBM community to explore 
current trends in large-scale brain network naming conventions. The objective of this survey was 
twofold: (1) to identify which terms the neuroscience community is using to characterize and 
describe large-scale brain networks, and (2) to determine the degree of consensus that already 
exists in the identification of network topographies. Members of WHATNET provided a range of 
images depicting large-scale brain networks derived from their own research or other sources to 
be used in the survey. Survey participants provided information on their academic background, 
including training and neuroimaging methods experience. For the survey, a randomized sequence 
of 93 brain network images and 7 “lure” network ensembles were presented, depicting network 
images in the brain volume and on the cortical surface. Participants were asked to provide open 
responses to the prompt: “Please name this network”.  

A total of 956 individuals entered in the survey. Of those, 611 responded to some of the 
questions, and only a total of 77 completed all of the questions. Of the 611 partial respondents, 
46% were members of the OHBM, 1% were undergraduate, 29% graduate, 27% post-doctoral 
fellows, 36% faculty, and 7% other. The majority (65%) listed cognitive neuroscience as their 
area of training, followed by 33% listing psychology, 32% network neuroscience/connectomics, 
16% clinical, 12% engineering, and 10% mathematics/statistics. On average, respondents 
reported having worked in the field of brain imaging for 9 years, although the spread of the 
responses varied widely, from 5% saying that they had only been working for about one year, up 
to 12% saying they’ve been working in the area for over 20 years. In terms of software used, 
most respondents reported using FSL (50%), followed by SPM (45%), AFNI (18%), and other 
(27%), with responses being non-exclusive. Most respondents reported using ICA in their 
analysis sometimes (35%), very often (16%) or always (2%), although a sizable group report 
using it only rarely (29%) or never (18%). Likewise, most respondents reported using brain 
parcellations in their work very often (40%) or sometimes (33%), with a small group reporting 
using it always (11%), relative to rarely (10%) or never (6%). Most respondents reported 
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conducting research using both task fMRI and resting state functional connectivity (43%), 
followed by connectivity-based only (36%), and task-based only (22%).  

Participants’ responses were manually coded, and the language was unified (e.g., 
“somatic” and “somato” were considered the same response) by two independent coders. Data 
were initially explored in terms of percent agreement. Here, we limit our discussion to those 
images for which there was the most and the least amount of agreement between responses.  

Three networks were identified by consensus in the upper quartile of images (Figure 1). 
The largest amount of agreement occurred for images that were identified as “somato network”. 
Of the 25 images with the largest amount of percentage agreement across participants, 13 were 
identified as “somato network”. The remaining 12 were evenly split between “default network” 
and “visual network”. Of these three networks, a functional or cognitive nomenclature was 
provided, as opposed to a neuroanatomical network name (e.g., “occipital”).  
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Figure 1. Survey responses with the most agreement across raters. (A) Percentage responses 
of the top 25 responses in terms of percentage agreement. The vertical number in parentheses 
next to the response term corresponds to the total number of respondents for that particular 
image. Sample images with the largest amount of agreement for (B) the “somato network” 
(96.97%, n = 99), (C) the “visual network” (92.08%, n = 101), and (D) the “default network” 
(92.93%, n = 99).  
 
 

By contrast, when we look at the 25 images with lowest percent agreement in responses, 
the pattern of results is rather different (Figure 2). All of the lures were included in the images 
that received 50% or less response agreement. Unlike network labels with high agreement, there 
was a greater heterogeneity of terms used in the lower quartile of responses. Specifically, 8 of the 
images were labeled as “salience network”, 6 as  “default network”, 4 as “frontoparietal 
network”, 2 as “language network”, 1 as “visual network”, 1 as “limbic network”, 1 as 
“amygdala network”, 1 as “somato network”, and 1 as “other”. In this sub-set of responses, there 
was a mix of cognitive/functional terms–such as “salience” and “default”--and neuroanatomical 
terms–such as “frontoparietal” and “amygdala”. Finally, it is worth noting that the number of 
responses in this lower quartile was rather low (Mresponses = 63.0, SD= 17.80), compared with the 
top 25 (Mresponses = 93.36, SD = 14.55). It is likely that the comparatively lower number of 
responses reflects participants’ hesitance or uncertainty as to whether the relevant image 
constituted a (canonical) network or, if it did, how it should be labeled.   

Cautiously, the results of this initial survey could be interpreted as revealing a preference 
amongst scientists to name large-scale brain networks according to their putative cognitive 
functions. They also suggest a certain degree of agreement regarding at least three canonical 
networks. These networks include two which are spatially contiguous within the somatomotor 
and occipital cortices. The third network, the default network, was the only spatially distributed 
network identified reliably. Of note, these three networks appear in the initial anatomically-based 
taxonomy proposal, which delineated “occipital”, “pericentral”, and “medial frontoparietal” 
networks (14).  

There was much lower consensus on network labels for all other spatially distributed 
large-scale brain networks, including the “salience” and “frontoparietal” networks. While it is 
difficult to run inferential statistics on these qualitative data, there is much more that could be 
explored from these results. We have made the data publicly available within the Open Science 
Framework ((17), https://doi.org/10.17605/OSF.IO/3FZTA). Nevertheless, this initial 
exploration suffices to support the claim that while there is some degree of agreement among 
scientists regarding the labeling and identification of a few large-scale networks, there is a 
substantial amount of disagreement, raising concerns about the consistency with which results 
are interpreted as well as concerns regarding reproducibility in the field more generally. A lack 
of agreement about basic network definitions will complicate any attempt at replication. These 
problems could be alleviated by a more standardized nomenclature. In what follows, we will 
detail considerations for moving beyond these arbitrary naming conventions, and for developing 
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a universal taxonomy that can help to move the field towards greater clarity and consensus in 
characterizing ensembles of brain regions with reliable concision.  

 

 
 
Figure 2. Survey responses with the least agreement across raters. (A) Percentage responses 
of the bottom 25 responses in terms of percentage agreement. The vertical number in parentheses 
next to the response term corresponds to the total number of respondents for that particular 
image. Sample images with the least amount of agreement.  (B) Sample image 13 received a 
label of “other” (16.67%, n = 66). (C) Sample image 12 received a label of “default mode 
network” (20.63%, n = 63).  (D) Sample image 88 received a label of salience network” 
(22.45%, n = 49).   
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3. Challenges to and considerations for building a universal taxonomy of large-scale 
brain networks 

 
The results of the survey suggest that there is a potential for consensus around a 

taxonomy of large-scale brain networks. However, many challenges remain in building further 
consensus around nomenclature, particularly for spatially distributed networks interposed 
between the heteromodal and distributed default network on the one hand, and unimodal, 
spatially contiguous, somatomotor and occipital networks on the other. WHATNET identified 
five interrelated issues which require careful consideration in building a universal taxonomy of 
large-scale brain networks. First, the spatial scale and resolution of any network must be 
considered, as well as how networks are organized hierarchically. This entails a complete 
description of how a network is defined (e.g., using full correlation, partial correlation, or other 
approaches). Second, there is substantial variability in network topography between individuals. 
This variance is observable across the typical healthy young adult populations included in many 
studies, varies systematically in the context of lifespan development, and may become more 
complex to characterize in clinical populations. Third, large-scale brain networks have been 
reliably demarcated spatially in cortex, but these topographies are incomplete without 
corresponding subcortical structures that are often ignored in widely-used parcellation schemes. 
Fourth, the investigation of large-scale brain networks is heavily biased towards fMRI research 
methods. While multi-modal information provides some support for fMRI observations, a 
universal network taxonomy would benefit from deeper enrichment of multimodal information. 
Fifth, brain dynamics, non-stationarity, and contextual effects (such as task-related 
reconfiguration) have a profound influence on observable network ensembles. These five issues, 
discussed in turn, reflect ongoing research initiatives and necessarily inform the development of 
any network taxonomy.  
 
3.1 Spatial scale, resolution, and hierarchies 

A network is defined by its nodes and edges (18). Nodes represent the fundamental 
functional units of the system and edges represent the interactions between nodes (19). In brain 
networks, nodes can be defined across spatial scales varying over at least five orders in 
magnitude, from the level of individual cells (~10-5 mm), through populations of functionally 
related neurons (~10-4 m to 10-2 m), to macroscopic brain areas and distributed functional 
systems (10-2 m to 10-1 m) (20,21). Network edges can similarly be used to represent structural 
and/or functional interactions between nodes over a similar range of spatial scales. Structural 
edges can represent synapses, axons, bundles of axons, or white matter pathways. Functional 
edges can represent measures of coupled spike trains or calcium signal fluctuations between 
individual neurons, covarying local field potentials, or statistical dependencies of physiological 
recordings taken from extended cell populations (22). 

The spatial and temporal resolution at which a given neural system is mapped will 
necessarily constrain the kinds of networks that can be observed. For instance, it is presently not 



 

10 

possible to measure entire nervous systems of mammals at cellular resolution, so any such 
networks can only be mapped within confined patches of neural tissue, precluding an opportunity 
to study systems with a more widespread anatomical distribution. In contrast, non-invasive 
methods such as MRI offer a powerful tool for assaying entire brain volumes at macroscopic 
spatial resolutions on the order of millimeters and the temporal resolution of fMRI on the order 
of seconds or sub-seconds (but see Section 3.D: Beyond fMRI). At the spatial and temporal 
scales currently accessible with MRI, the large-scale brain networks observed are likely to 
represent long-term attractors of more rapid cellular dynamics, and are shaped by underlying 
anatomical connectivity and prior inter-regional co-activation histories (23–25). 

A particular challenge for macroscale neuroimaging is that there currently exists no gold 
standard for defining network nodes. This is fundamentally a question of brain parcellation. 
Under ideal conditions, a network node should correspond to a functional brain area, which may 
be defined as a contiguous patch of neural tissue that shares homogenous functional specificity, 
connectivity, architectonics, and topography (26,27). Since Brodmann (28) first parcellated the 
brain into distinct cytoarchitectonic regions, numerous investigators have attempted to identify 
the boundaries between functionally specialized areas and nuclei, both in cortical and non-
cortical regions (29,30) often leading to conflicting parcellation schemes. Indeed, some have 
questioned the very existence of discrete areas (31,32) and many cellular, molecular, and 
functional properties of the brain appear to follow spatially continuous gradients (33,34), 
although statistical evidence for reproducible, discrete transitions across neocortical areal 
boundaries in multiple independent modalities has been observed (35). In the MRI literature, the 
lack of cellular or molecular probes has led different investigators to deploy various methods and 
heuristics for defining network nodes, including random parcellations (36), data-driven 
clustering based on patterns of structural or functional connectivity (37), gradient-detection 
algorithms (38), the use of activation foci from task functional MRI (39) or the co-localization of 
gradient-defined boundaries in neuroimaging measures of architecture, function, connectivity, 
and topography (35). These methods vary in the degree to which they capture the essential 
properties that define a given brain area, which ultimately determines the composition of an 
extended functional network. Indeed, the specific way in which nodes are defined will influence 
the networks that can be identified. For instance, the commonly used automated anatomical 
labeling (AAL; (40) and Desikan-Killiany gyral and sulcal atlases (41) treat the superior frontal 
gyrus as a single region, yet this gyrus contains several cytoarchitectonically and functionally 
distinct subregions which cannot be demarcated without a more fine-grained parcellation (42).  

The method used to define network edges will also influence the composition of any 
networks observed with further analysis. In structural networks, edges are typically derived from 
dMRI tractography, a technique that produces streamlines representing axon bundles. These 
bundles form the backbone that supports communication between brain areas both at rest and 
during task performance. While the brain transitions across functional states at a sub-second rate, 
this structural backbone is not altered at that time scale. Thus, although some relationships are 
expected between structural and functional networks (e.g., a disruption in the former resulting in 
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a disruption in the latter), it is important to remember that these two approaches measure 
different features of the brain. Furthermore, various analytic choices have an impact on the edges 
of structural networks as measured by dMRI tractography (43–51) (see Section 3.d) and the 
effect of these analytic choices on the accuracy of dMRI with respect to the ground truth 
obtained from post mortem microscopy techniques is an area of active investigation (52,53) (for 
review see (54).  

In functional networks, connectivity can be defined using statistical techniques (e.g., 
correlation or coherence) for quantifying a dependence between bivariate or multivariate time 
series (13). The choice of a specific coupling measure has a significant impact on network 
structure. The product-moment correlation coefficient is the most widely used in the functional 
MRI literature. However, this method is transitive, meaning that if region A correlates with B 
and B with C, then A must correlate with C, even if they do not share a direct anatomical 
connection. As such, correlation-based networks are sensitive to indirect, polysynaptic 
connections and tend to be strongly clustered (55). The use of partial correlations can remove 
these indirect effects but, when applied naively to large networks, can be too aggressive and 
remove important network structure (55,56). These variations in methods for node and edge 
definition are compounded by the myriad ways available for processing and denoising functional 
MRI data (57,58), which can yield divergent estimates of network connectivity.   

The analysis of network organization is typically based on the idea that a network can be 
understood in terms of a set of separable “communities” (or “modules”). A given node belongs 
to one and only one community in most formulations. Whereas this assumption is a reasonable 
starting point, there is no inherent reason that biological networks should be organized in this 
precise manner (59). For example, a specific gene may participate in many metabolic pathways 
and thus be better understood as belonging to more than one community. Likewise, hub regions 
in the brain are thought to dynamically affiliate with disparate clusters of brain regions in a 
context-dependent fashion (60,61).  

In the past decade, several research groups have investigated the overlapping nature of 
brain communities (62–65). Among other findings, this work has revealed that select brain 
regions connect both within their community, and also across communities. In this way, 
communities have somewhat fuzzy boundaries, but it is also clear that specific nodes can play 
important roles in multiple communities. More broadly, this research encourages discussions that 
evaluate common assumptions in understanding large-scale brain networks. Are hard partitions 
the appropriate mathematical language, or would it be valuable to adopt a notion of “gradients of 
affiliation” that embraces a more continuous, albeit complex, characterization of network 
architecture? Indeed, even within a discrete brain region there is evidence of functional 
multiplicity, such that distinct yet overlapping gradients of functional organization can be 
identified (66). We return to these issues in the final section where we provide recommendations 
for dealing with these ambiguities.  

For now, these issues are illustrated by considering one popular approach for functional 
parcellation of fMRI data, spatial ICA. sICA is a data-driven decomposition method that can be 
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applied to fMRI data to decompose the data into a collection of spatial signal sources, e.g., fMRI 
signals from brain networks and from motion effects and artifacts, that mix together to generate 
the measured fMRI data. There are many applications of sICA for fMRI, including data 
denoising, data reduction, and investigating functional connectivity. Here we discuss how sICA 
has typically been applied in the service of large-scale network identification. 

For functional connectivity analysis, sICA is typically applied to group fMRI data created 
by temporally concatenating the fMRI data across subjects. Resulting group sICA spatial maps 
then represent a data-driven soft functional parcellation, with resulting spatial maps representing 
spatially independent sources of the data (neural and nuisance signals) that are common to all 
participants. To investigate inter-subject variability in between- or within-network connectivity, 
this parcellation is projected back into each participants’ fMRI data to compute subject-specific 
spatial maps and time courses for functional connectivity analyses. In this two step procedure, 
the group sICA can be used to define discrete neural elements and can be tuned to different 
spatial scales observable with fMRI, from high-dimensional parcellations of the brain into 
individual or bilateral localized brain regions (~mm to few cm) to modules or sub-networks 
comprised of a few nodes (few cm to ~10 mm), to widely spatially distributed large scale 
networks (whole brain ~10 cm). The projection step, for example, using dual regression (67), 
extracts temporal courses for each map in the parcellation scheme from each subjects’ data, 
which may then be used to compute subject specific spatial maps that approximate the unique 
configuration of the networks represented in the group sICA in each participant. The subject-
specific temporal courses can be used for network modeling, for example, to assess between-
network connectivity, while the spatial maps capture inter-subject variability in connectivity of 
individual networks that can be assessed for group differences or relationships with non-imaging 
variables. For network modeling using the network time courses, the same issues raised above 
related to edge selection apply (e.g., full correlation versus partial correlation or other (25,68)). 

The spatial scale of the group sICA parcellation is determined by the group sICA model 
order parameter, or the number of components estimated by sICA. For group sICA of fMRI data, 
low model orders of ~20 result in a parcellation into large-scale networks (25,69,70), whereas 
higher model orders of ~30-70 parcellate the brain into sub-networks, and the highest model 
orders (100-300+) implement a fine parcellation into individual unilateral and bilateral brain 
regions as well as sub-networks that do not fractionate further (25,71). As an aside, care must be 
taken to balance the desired spatial scale against the particular sub-networks that may be of 
interest. All sICA methods implement a principal component analysis (PCA) for data reduction 
prior to the sICA. This step is driven by identifying orthogonal signals of interest that explain the 
most variance in the fMRI data, starting with the signal accounting for the most variance and 
progressing down to signals that account for small variance. The data are reduced by throwing 
away the components (ordered by most variance accounted for) that exceed the model order of 
the sICA. As such, it frequently happens that brain networks that do not account for enough 
variance to make it through the PCA reduction step are discarded and do not show up in lower 
model order sICA spatial maps. As the model order increases, we then see not only fractionation 
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of brain networks into sub-networks/regions, but also the appearance of new networks that were 
not observed at lower model orders (72,73). This is particularly true for subcortical and 
brainstem networks. For example, in Abou-Elseoud et al. (2010), the basal ganglia network does 
not appear until model order 40 (their Figure 2). Additionally, at the highest model orders, 
spatially autocorrelated noise begins to contaminate the resulting sICA decompositions (35). 

To demonstrate the links between parcellation across spatial scales and model orders, we 
consider the open access sICA-based group level functional parcellations (71) distributed by the 
Human Connectome Project (74). Figure 3 shows that in the parcellation from model order = 15 
(from HCP_PTN820), two DMN sub-networks are observed in the resulting group sICA spatial 
maps, a dorsomedial prefrontal sub-network (or anterior DMN, aDMN) and a medial temporal 
lobe DMN sub-network (mtlDMN). Figure 4 shows how these two networks persist and/or 
fractionate as the group sICA model order increases, from the coarsest parcellation at lowest 
model order to the finest parcellation at high model order. Both networks are stable as the model 
order increases to 25. However, at model order 50, the aDMN further fractionates into dorsal and 
ventral PFC DMN sub-systems (75), while the mtlDMN is represented as a single sub-network. 
At model order 100, the mtlDMN is split into two subsystems, while the dorsal/ventral PFC 
aDMN sub-systems remain stable. These systems remain stable and/or are further split at the 
highest model orders (200, 300; not shown). While this multiscale organization is likely to 
represent a real characteristic of brain organization, it also creates practical challenges with 
respect to node definition, parcellation and spatial scale, and how sICA can be used to 
investigate functional connectivity across the mesoscale. 
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Figure 3. Default network hierarchies. Two subsystems of the DMN are identified in the group 
sICA with model order = 15, a dorsomedial prefrontal or anterior sub-system (aDMN) and a 
medial temporal lobe sub-system (mtlDMN). Hierarchical clustering shows they cluster together 
at the second level of the tree. Although these two systems are related, they are more strongly 
connected with different networks, e.g., aDMN is linked with an inferior frontal-opercular 
system (#12; sometimes referred to as the salience network) and mtlDMN is linked with a left 
frontoparietal network (#5; sometimes referred to as the central executive network). 
   
 
 

  
Figure 4. Default network fractionation. At model order = 15, the DMN is fractionated into 
two sub-networks, aDMN and mtlDMN. These two networks are stable across model order = 25, 
but the aDMN fractionates into two further subdivisions, a dorsal medial PFC system and a 
ventral medial PFC system, which are stable at model order = 100. The mtlDMN fractionates at 
model order = 100 into two systems that reflect a split into a precuneus mtlDMN system and a 
posterior cingulate mtlDMN system. These subsystems persist and/or further fractionate at even 
higher model orders (200-300, not shown). 
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3.2 Inter-individual variability  
Functional neuroanatomy varies spatially across individuals over and above 

preprocessing procedures that normalize neuroimages to a standard space. This has been 
recognized for over 20 years by cognitive neuroscientists who engage in task-based functional 
localization to characterize regional brain function (e.g. (76), fusiform face area). For example, 
the parahippocampal “place” area can vary by up to 20mm along a rostral-caudal axis between 
individuals (77). Just as brain regions vary in location across individuals, so does network 
topography (78). A discussion of large-scale brain network taxonomy requires an understanding 
of variation in these systems across individuals. It also requires a clear assessment of the degree 
to which this variation impacts our ability to identify common networks across individuals (79) 

Individual variability interacts with questions of taxonomy in at least two ways. First, 
networks are often first identified based on evidence that a particular set of regions are linked 
consistently across individuals. For example, if, in every person we examine, we find links 
between the posterior cingulate, medial prefrontal cortex, and angular gyrus, we increase our 
confidence that this is a ‘network’ entity and apply a label to it (e.g., “default network”). Related 
to this, recent work on individual variability shows that the boundaries between the default 
network and other networks, as well as between various sub-components within the default 
network, transition more sharply when networks are described within each individual than when 
they are combined across individuals (80–83).  

Second, in the face of inter-individual variability, we need an approach for how to 
determine correspondence across individuals in order to implement taxonomies in practice. fMRI 
functional connectivity studies suggest that while some regions of the brain appear to be largely 
similar in their network topography across individuals, others show pronounced individual 
differences (78,84–86). These studies have found that association regions, especially in the 
lateral frontal lobe and near the temporo-parietal-occipital junction, tend to exhibit the most 
variable spatial topography of the cortex, with much lower variation seen in sensory and motor 
regions. Given this variation, how can we determine that a network is the same entity across 
different individuals or groups? If, for instance, we find an individual missing specific 
components of Network A or with a spatial topography similar but slightly displaced relative to 
Network A, would it be accurate to call this Network A? In what ways and to what extent can a 
network vary, but still represent the same underlying entity? To what extent should we expect 
certain networks to only be expressed in some individuals but not others? 

These questions are not purely theoretical. For instance, following complete  
hemispherectomy - a surgical procedure wherein an entire cerebral hemisphere is removed - the 
lone remaining hemisphere can exhibit network properties typically observed in individuals with 
fully intact brain structures (87,88). Individuals with extensive cortical loss due to prenatal stroke 
can exhibit intact behavioral function, accompanied by networks that are entirely preserved but 
displaced away from the stroke (89). Even well-studied networks that appear in roughly similar 
brain locations in almost every person do not correspond exactly anatomically (e.g., the default 
network (80) or somatomotor networks (90)). A recent quantitative examination of inter-subject 
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variability of 14 large-scale brain networks finds that while networks exhibit a common core, 
consistency across individuals falls off sharply, especially in higher order networks in the frontal 
and parietal lobe (79). This individual variation suggests that standardized parcellation schemes 
that are uniformly applied to a sample without respect for functional neuroanatomic variability 
can mischaracterize network estimates, resulting in reductions in specificity and analytical power 
in inter-individual comparisons (91–94). This poses a limit on the application of anatomy-based 
taxonomies when network topographies vary across anatomical boundaries (14).   

Implementation of a robust network taxonomy requires a way to estimate and compare 
networks across individuals. Below, we discuss key factors when considering the relationship 
between universal brain networks and inter-individual variability: (1) methods that have been 
used to capture individual brain networks, (2) validation of these measures and sources of 
potential errors, (3) what studies of individual brain networks suggest about the most common 
forms of individual variability, and (4) how brain networks differ across different subsets of the 
population (based on age or disease status). 
 Many approaches have been developed to estimate individual variability in brain network 
organization. One class of approaches applies data-driven techniques (e.g., clustering) to a large 
quantity of data at the individual level (80,85,90). However, this so-called ‘precision functional 
mapping’ approach requires a large quantity of data from each participant (or multi-echo fMRI 
data acquisition; see Lynch et al., 2020a). In addition, each participant is analyzed separately, so 
network correspondence between participants is not enforced, and post-hoc network assignment 
can be uncertain in some circumstances. A second class of approaches estimates individual-
specific networks by constraining them to be spatially similar to a group-level prior (78,79,95–
98). This class of approaches allows the reliable estimation of individual-specific networks with 
less data per individual, and also establishes network correspondence across participants. 
However, the use of a group-level prior might restrict the flexibility of networks to vary across 
participants. Approaches can vary along the full spectrum of completely data-driven to strongly 
prior-driven; moreover, priors can be implemented in different ways (to constrain, for instance, 
the size, shape, topography or location of a network), which will have different implications for 
the forms of variability that they can capture. Even when using a group-level prior, some 
approaches can accommodate large deviations across participants. Finally, a third class of 
approaches estimate inter-subject variability continuously at the voxel or vertex level (84,86), 
making no assumption about the number or form of underlying networks. However, this 
approach assumes voxelwise/vertexwise correspondence across participants, which is a strong 
assumption given pronounced individual differences across participants.  

What is the evidence suggesting that the inter-individual network variability estimated 
from resting-state fMRI is real? First, these networks are highly replicable across sessions within 
the same participant (78,85,95). Second, task-evoked fMRI activations align well with the 
idiosyncratic network topography in individual participants (81,86,90,98,99). Third, individual-
specific network topography is heritable (100). Finally, individual-specific network topography 
can be used to predict the behavioral traits of individual participants (78,86,101). 
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However, care is needed in the measurement of individual variability. In addition to 
reflecting variation in large-scale brain systems, variability in functional connectivity can also be 
induced by non-neural sources such as motion (102–106), respiration (107,108), sampling 
variability (85,109), and signal loss due to acquisition parameters, head shape or head position. 
For example, while functional networks have been described as shifting from a more local to a 
more distributed pattern from childhood to young adulthood, some of this variation is likely to be 
caused by head motion, which induces distance-dependent artifacts (102,105,110). Respiration 
has been associated with global BOLD signal changes, which introduces one of many sources of 
artifact into fMRI functional connectivity estimates (104,111,112). In addition, the fMRI BOLD 
signal is quite noisy and autocorrelated; a fair amount of data is needed to counteract this 
sampling variability and reach high reliability at an individual subject level (85,109,113,114). 
Finally, these factors differ across brain regions concurrent with properties of the underlying 
BOLD signal and MRI measurement method. Many popular fMRI sequences result in substantial 
signal loss and distortion near tissue boundaries and reduced signal further from the receiving 
coil, leading to difficulty in accurately measuring functional networks in certain brain regions, 
particularly impacting the ventral (especially anterior) temporal lobes and subcortex (113). 
Caution is warranted in interpreting variation in functional networks if these non-neural sources 
of variation are not adequately addressed. A growing number of papers have assessed the ability 
of different acquisition, preprocessing, and denoising paradigms to address these artifacts 
(58,104,115–120).  

When such confounds are minimized, it becomes evident that several different forms of 
inter-individual variability are present in brain networks (Figure 5). The most commonly studied 
form of inter-individual variation is variation in the magnitude of connectivity between brain 
regions of a network (Figure 5B). Individual differences in connectivity strength are often taken 
as an outcome metric of interest, to be associated with external states or traits (121,122). 
However, when connectivity strength is used to define networks, as discussed here, large inter-
individual variabilities in connectivity strength between networks can induce confusion about 
network membership (123,124).  

A second, more recently recognized form of inter-individual variation is variation in the 
spatial position and extent of network nodes (Figure 5C) (78,80,85,86,90,95–99,101,125–131). 
Such variations can take the form of areal expansions, contractions, or displacements that lead to 
variation in the exact positions of network borders across individuals (125,126). More extreme 
individual spatial variations can relocate a node outside of the initialized parcel boundary, and 
not spatially overlap with other sample participants (98,123). Overall, spatial variation appears to 
contribute more to individual differences in brain networks than variations in connectivity 
strength (101). Still, it is not clear which form of variation may be most related to behavioral 
variables of interest. For example, “hyper-aligned” brains (i.e., brains that are functionally 
aligned to one another by re-weighting voxel signals to maximize inter-subject correspondence 
in functional responses from either movie activations or functional connectivity) show better 
prediction of cognitive variables than non hyper-aligned brains (132).  
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Finally, brain networks can exhibit topographical variations across individuals (Figure 5D). 
Single cortical areas representing network nodes can be split into multiple discontinuous regions 
in some individuals, while still clearly exhibiting the same properties of the unified area (35). 
Individual-specific brain networks also exhibit ectopic intrusions, in which a punctate region 
within a brain network has strong, idiosyncratic connectivity with a different network 
(85,86,123,125). All individuals exhibit some form of topographical variation in their brain 
networks (125). However, it is unclear if these violations of regional spatial contiguity reflect a 
differential sampling of regions on different hierarchical scales.                                                                                                            

Each of these forms of variation is important to consider when building or applying a 
taxonomy of networks. In a given individual, variation in functional connectivity strength may 
result in a canonical network node to “fall out” of the network, or be incorporated into a different 
network. Spatial variation in networks may create the appearance that a network node is absent 
or disconnected when it is actually mis-localized by standardized parcellation schemes. 
Topographical variations may create apparent extra network nodes not typically present in most 
individuals. Any taxonomy must reflect the central tendency network characteristics of the 
general population, but also be flexible enough to accomodate connectional, spatial, and 
topographical variations found across individuals. 

 
 

 
 
 
Figure 5. Forms of inter-individual variation in functional neuroanatomy and large-scale 
network topography. (A) Task-responsive cortical areas, which comprise large-scale networks, 
vary in their spatial location across individuals. (B) Similar network components are present 



 

19 

across individuals, but differ in magnitude of associations. (C) Large-scale networks differ 
between people in size and position. (D) Whole-brain connectivity, resulting from small 
differences in seed placement, can reveal dramatically different network topographies between 
people. Adapted figure panels (A) from (77), (B-D) from (123), with permission. 
 
 

Inter-individual variability in large-scale network topography is seen in typical samples 
of young healthy adults. There is also variability across the human lifespan and in clinical 
populations. Developmental differences are often observed in within- and between-network 
connectivity. For example, developmental brain maturation entails a gradual change from more 
diffuse connectivity patterns in young children to more clustered systems in young adulthood 
(133). This pattern appears to reverse in aging, where we observe system dedifferentiation in 
older adults (134,135). Other examples are clinical disorders that have been described as 
disconnection syndromes, such as Alzheimer’s disease (136) and schizophrenia (137) which both 
show aberrant default network functional connectivity (138,139). An important consideration in 
this context is whether such age- and/or disease-related connectivity differences fundamentally 
affect brain network organization. If they do, how should future studies consider potential 
differences in network organization across the lifespan or among clinical groups (140)?  

The current literature shows that most canonical brain networks can be detected across 
different age groups and clinical populations, even if functional connectivity strength may be 
attenuated in certain cases (11,141,142). Moreover, the overall spatial organization of brain 
networks appears quite stable across individuals with or without psychiatric disorders, with 
group differences being relatively subtle (143). Like the observation in typical young adults (79), 
variability in children and older adults can be seen near the boundaries of brain networks, with 
the core network regions remaining relatively stable (144,145). Most studies that compare groups 
examine differences in functional connectivity strength using existing parcellations of pre-
defined brain systems, which are commonly derived from healthy young adult samples (30). To 
ensure comparison of the same brain systems across groups, researchers could restrict functional 
connectivity evaluations to core network regions, for example as those proposed by Dworetsky 
and colleagues (79). However, potentially interesting information may be lost when solely 
focusing on signal from core system nodes, as variability across typical young individuals 
appears mainly due to differences in spatial topography rather than functional connectivity 
strength (146). Alternately, methods to individualize parcellations, discussed above, can also be 
applied to groups other than young adults. This approach has recently been successfully used to 
examine age differences in the functional architecture of the brain while respecting inter-
individual variability in network topography (147,148). Future work should consider, however, 
whether variance should be benchmarked to normative patterns in healthy young adult brains, or 
be more flexibly applied to characterize systematic patterns of variance in functional network 
organization. 
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3.3 Network affiliations of subcortical structures  
Human large-scale brain network identification with neuroimaging has focused on 

characterizing networks in the cerebral cortex (25,30,149). There are several reasons for this 
focus, but the most impactful is the fact that fMRI data exhibit substantial signal dropoff as 
distance increases from the MR coil. The result is that fMRI signals in subcortical structures tend 
to be noisy and have lower amplitude. As such, functional connectivity with known cortical 
networks is low, and network detection approaches struggle to label subcortical voxels. Specific 
to fMRI, the way that BOLD signal relates to neural activity varies considerably between cortical 
and subcortical regions. In the cerebellum, for example, (150) Purkinje cells produce weaker 
changes in the blood flow (151,152) than the neocortex. 

This methods-driven cortical bias risks ignoring major portions of the brain’s network 
architecture. Anatomical tracing studies demonstrate that the major subcortical structures exert 
critical influence over the cortex via reciprocal or looped circuits. Cortex and cerebellum 
communicate via the cortico-ponto-cerebellar pathway, which then feeds back to cortex via 
thalamus (153). Separately, cortex, striatum, and thalamus are linked in cortico-striato-thalamo-
cortical loops (154). Primate (both non-human and human) research shows that these projections, 
while organized in a general topographic manner on the basis of cortical origin, contain complex 
interfaces between terminal fields from diverse cortical areas, which allows transfer of 
information across functional domains (155–157). This suggests that cortical networks will also 
serve as an organizing principle for subcortical structures (or vise versa). Indeed, specialized 
network identification approaches that account for low signal do find topographically organized 
networks in striatum (127,158–162), cerebellum (130,131,163,164), thalamus (127), 
hippocampus (165), amygdala (166) and basal forebrain (167,168). 

In many cases, this network organization converges closely with known anatomical 
projections in non-human primates. For example, cortical somatomotor networks are represented 
with a topographically preserved organization in posterior putamen (159), in ventral lateral 
thalamus (127), and in both anterior and posterior cerebellar lobes (163). The occipital network 
has little representation in striatum or cerebellum, but is present in a posterior lateral thalamus 
region converging with the lateral geniculate nucleus (127). 

In other cases, the subcortical representation of cortical networks that are dramatically 
altered and expanded in humans relative to other mammals provides novel insight into their 
organization. While the default network is well known to be represented in a variety of frontal, 
parietal, and temporal cortical regions, it also has representation in anterior hippocampus and 
amygdala (165,166), ventral striatum (83,159,162), the medial nuclei of the thalamus (127), 
basal forebrain (167,168), and at the border between cerebellar Crus I and II (163) (Figure 6). 
Recent work has begun to map subcortical connectivity of the default network using high-
resolution functional imaging (169).  

An accurate taxonomy of networks is incomplete without consideration and inclusion of 
these subcortical elements. For example, the default network has known roles in processing 
reward, memory, and emotion (170) These functions are incompletely understood without the 
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topography of the default network including subcortical counterparts such as ventral striatum, 
hippocampus, and amygdala. Furthermore, it is important to note that both anatomic and fMRI 
studies show not only segregation of subcortical projections based on cortical origin, but also 
substantial integration and overlap. Taking both of these aspects into account is thus crucial for 
better explaining function and behavior based on anatomy. A full review of subcortical 
affiliations with large-scale cortical networks is beyond the scope of the present work, and 
substantial work remains to reliably delineate these associations. In this way, any network 
taxonomy must continue to evolve as new discoveries regarding cortico-subcortical interactions 
are made. 
 
 

 
 
Figure 6. Cortical and subcortical elements of the default network. Anatomical locations of 
the default network (red) in lateral and medial cortex (top), basal ganglia, thalamus, and medial 
temporal lobe (bottom left), and cerebellum (bottom right). 
 
 
3.4 Beyond fMRI: Multi-modal information 

Large-scale neurocognitive networks were historically identified by cognitive neurology 
(171) and complemented by comparative neuroanatomical fiber tract tracing (172). In the last 
twenty years, fMRI has largely superseded this work, and resting-state functional connectivity 
has come to dominate investigations of large-scale brain networks. However, 
electrophysiological imaging modalities have been increasingly utilized in the study of 
functional networks. In parallel, structural networks have been probed with dMRI tractography. 
Several studies have compared these techniques, with the goal of investigating the concordance 
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between functional networks derived from fMRI and electrophysiology, or the extent to which 
these functional networks can be explained by the structural connections derived from dMRI. As 
we acknowledged at the outset of this project, future work must incorporate findings derived 
from multiple neuroimaging modalities to enrich our understanding of large-scale brain network 
taxonomies. Here we discuss points of multimodal convergence and areas where complementary 
evidence can be derived from modalities other than fMRI to further the goals of WHATNET.  

Functional connectivity from fMRI was spatially compared with electrocorticography 
(ECoG) / intracranial electroencephalography (iEEG) to establish a neuronal, rather than 
vascular, basis for fMRI connectivity. These concerns were addressed by the observation of 
spatial convergence of connectivity between fMRI and intracranial electrophysiology (173–175). 
Conversely, a major goal of early spatial comparisons of fMRI to scalp EEG/MEG was to 
demonstrate the capability of (source-localized) non-invasive electrophysiology to study large-
scale intrinsic brain networks. In particular, large-scale brain networks akin to the “canonical” 
networks known from fMRI have been observed in scalp recordings (176,177) (for review see 
(178)). With many methodological goals largely addressed, the field can now increasingly focus 
on the complementary but distinct neurobiological information about brain networks provided by 
these different neuroimaging modalities. 

Non-invasive scalp EEG/MEG is sufficiently informative to permit the study of 
macroscale networks, yet the necessity of mathematically ill-posed source localization and 
residual source leakage render these methods spatially less reliable and less resolved than fMRI. 
On the other hand, invasive ECoG/iEEG provides local field potentials/multiunit activity data on 
connectivity without providing ‘whole brain’ data (note however, pooling electrode pairs over a 
large number of patients may overcome this issue (179)). Counterbalancing these spatial 
weaknesses, the core strength of electrophysiological methods compared with fMRI is that they 
allow the study of networks at a finer temporal scale, permitting analysis of their time-varying 
dynamics (180). 

With regards to more direct measures of neural connectivity, the spatial correspondence 
of whole-brain connectomes between fMRI and electrophysiological methods is significant, but 
seldomly higher than moderate in effect size. This observation holds true irrespective of data 
modalities (fMRI-to-scalpEEG, fMRI-to-ECoG, fMRI-to-MEG) and methodological and 
analytic choices (181). The electrophysiological and hemodynamic connectomes may therefore 
reflect partially non-overlapping neural populations (182). Further, there may be non-neuronal 
but biologically meaningful contributions to the cross-modal divergence, such as vasculature 
(183). The above-described studies were conducted using resting state fMRI data. Task-evoked 
changes relative to resting state have also been explored (184). An open question is therefore 
whether the spatial deviations between functional data modalities are systematic. We expect a 
systematic difference in precise source locations. 

Several studies have investigated the structural basis for fMRI-derived intrinsic networks 
(see (185) for review). Early work derived structural connections either from prior tracer studies 
in macaques (186) or from dMRI tractography in humans (187–189), and simulated functional 
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time courses given these structural connections and random fluctuations in neuronal activity. The 
comparison of these simulated time courses to those measured empirically by resting-state fMRI 
showed evidence that functional connectivity may indeed arise from spontaneous activity across 
regions that are connected structurally. However, direct correlation between edge weights of 
structural and functional networks is, at best, in the low to moderate range (187,189,190). While 
structural connections can be used to predict functional connectivity (187,189,191,192), the 
reverse is not necessarily true (187) (but see (193)). This has been attributed to the fact that two 
regions can be coupled functionally even in the absence of a direct structural link between them, 
if they are linked indirectly via a third region. Several studies have shown that indirect structural 
connections can predict functional connectivity, although their predictive power is somewhat 
lower than that of direct structural connections (187,189,191). The complex relationships 
between structural and functional connectivity are highlighted in case studies such as split-brain 
patients, in whom the cerebral commissures have been disconnected (194). In the absence of 
direct interhemispheric structural connections, these patients can still exhibit strong functional 
connectivity across the hemispheres that is most likely mediated by indirect subcortical pathways 
(195,196).  

Given the plethora of approaches to dMRI tractography, it is worth considering how 
algorithmic choices that affect structural connections obtained from dMRI may impact these 
findings. Whole-brain structural network analyses have typically utilized deterministic 
tractography. Validation studies that have compared dMRI tractography to anatomic tracing have 
shown that, when compared at the same false positive rate, probabilistic tractography methods 
have higher true positive rates (or, equivalently, lower false negative rates) than deterministic 
tractography methods (197–200). However, the default thresholds typically used in tractography 
tend to be conservative. That is, they correspond to low-false-positive, low-true-positive 
operating points (199). In that regime, any performance differences between probabilistic and 
deterministic methods are small. Importantly, that is a regime where all tractography methods 
detect the larger structural connections from each region, but miss the smaller ones. This is likely 
to have had an impact on any prior comparisons of structural and functional brain networks, and 
merits further investigation in the future. 

Finally, the relationship between structural and functional networks may vary between 
functional states (201) and with development (202,203). While functional connectivity is of a 
highly dynamic nature (see Section 3.5 below), the brain is not rewired structurally at the same 
rate. This implies that we cannot expect full agreement between functional and structural 
connectomes. Thus, even after resolving all methodological issues, fMRI and dMRI will provide 
complementary information about brain networks. As discussed above, however, the literature 
does provide evidence for a link between the two, and in particular for (time-averaged) resting-
state fMRI networks emerging from correlations of spontaneous activity between regions that are 
connected structurally. The brief overview of multimodal neuroimaging findings relevant to the 
goals of WHATNET provided here points to many open questions that we hope to see addressed 
in future iterations of guidelines for developing network taxonomies.  
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3.5 Dynamics, non-stationarity, and contextual effects on network organization  
 As discussed throughout, large-scale brain networks are typically defined using static 
functional connectivity. Static functional connectivity estimates are based on averaging across 
the entire duration of the fMRI timeseries data. However, it is important to consider that fMRI 
BOLD is a dynamic signal on multiple levels of temporal resolution. Contextual features of an 
fMRI scan, such as time of day (204), recent experience, and learning can all modulate network 
properties and their relationship to cognition and affect (122). Additionally, the BOLD signal is 
dynamic within a single scan. In this next section we discuss how correlation magnitudes 
fluctuate across time, resulting in time-varying dynamics in whole-brain connectome 
organization. While time-varying functional connectivity analyses may be susceptible to 
spurious findings, careful handling of motion and other artifacts, along with implementation of 
appropriate statistical methods, allows for important insights to be gained using a dynamic 
approach (205). The question we address here is whether these dynamics should be considered 
when defining large-scale brain networks. We address changes in network composition both in 
response to changing cognitive demands (e.g., when performing different cognitive tasks) and on 
a moment-to-moment level within a particular cognitive context (e.g., during a resting state 
scan). 

Large-scale network organization remains largely stable between rest and task states 
(206–208). Data-driven weighted methods (e.g., temporal ICA) treat rest and task activation on a 
level playing field and find large-scale networks during both rest and task states (120). Yet 
differences are observed, and are thought to be meaningful and systematic (e.g., a result of 
differing levels of arousal or of the specific cognitive or affective context) (Bolt et al., 2017; 
Cohen, 2018; Gonzalez-Castillo and Bandettini, 2018; Kinnison et al., 2012; McMenamin et al., 
2014; Najafi et al., 2017). Much literature focusing on network reconfiguration describes 
changes in overall network topology, such as the degree of modularity or across-network 
integration, without probing whether nodes of intrinsic networks change network affiliation 
across cognitive contexts (e.g., (209–212). Other work, however, reports changes in network 
affiliation that occur when cognitive demands change (e.g., (213–216)). Recently, it has been 
reported that network membership of up to 75% of nodes changes across a variety of cognitive 
tasks. Moreover, the specific cognitive context can be successfully predicted based on patterns of 
change in network affiliation (217). Thus, task context is an important feature to consider when 
characterizing network topography. For example, the default network consists of subnetworks 
(10,218–220) that are more distinguishable in terms of community membership during cognitive 
tasks compared with rest (219,221). 

One set of brain regions whose categorization needs particular attention in terms of 
assignment to intrinsic networks are “flexible hubs” (60). These are nodes that connect across 
several intrinsic networks (e.g., connector hubs) and whose connections vary as a result of 
cognitive context. These regions are thought to be critical for integrating across specific task 
demands in complex cognitive tasks (222–224). Depending on how network affiliation is 
defined, these nodes increase their between-network functional connectivity (225) and even 
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change network membership (226) across task contexts. Given these contextual changes in 
network affiliation, how should these flexible hubs be defined when considering a harmonized 
taxonomy of brain networks? Probabilistic mapping of network membership in core intrinsic 
networks across cognitive contexts is one promising direction for differentiating between 
intrinsic network nodes that are stable across cognitive contexts and those that flexibly change 
their network membership such as flexible hubs; to date this strategy has largely been used to 
identify consistency across subjects (79). 

Even within a particular cognitive context, the whole-brain pattern of connectivity 
changes, affecting moment-to-moment cognition (227). How do the relatively short-lived 
patterns of connectivity aggregate to generate the static connectome organization, and thus the 
“canonical” networks that we seek to characterize? It is known that the connections with the least 
amount of time-varying dynamics are those with the strongest correlations in the static 
connectome (228). Investigations of connectome states, defined as recurrent, quasi-discrete 
whole-brain connectivity patterns (derived, for example, by clustering or Hidden Markov 
Modelling), are in line with this observation. Specifically, static organization can be viewed as a 
“common denominator” that is to some degree present in most functional connectome states, 
while the individual states express additional state-specific spatial features (e.g., (229)). 
However, fMRI investigations at a finer temporal resolution further suggest that, at any given 
moment, a specific combination of the “canonical” intrinsic networks are co-activated, while the 
remaining networks are collectively inactive (or deactivated) (230). Specifically, a recent 
advance has introduced fMRI “edge time series” analysis, a decomposition of functional 
connectivity into its framewise contributions (230). Any given frame is characterized by a 
pattern of co-fluctuations. The authors noted that co-fluctuation patterns, when thresholded, 
result in binary time series that exhibit two communities -- one of nodes showing positive co-
fluctuations and another of nodes showing negative co-fluctuations, creating a bipartition. This 
analysis suggests that the complete set of canonical networks can never be expressed at any 
single time point. Rather, they emerge from the temporal superposition of many dissimilar 
bipartitions. Additionally, other studies using the same methodology have demonstrated that not 
only are canonical networks largely absent at individual timepoints, most timepoints contribute 
relatively little to the overall organization of the static functional connectome architecture. 
Rather, the static connectome organization is primarily driven by short-lived but high-amplitude 
co-activations (231,232). Some interpret these results to suggest that the canonical networks 
whose strong within-network connectivity dominates the static connectome may be better 
thought of as recurrent transient phenomena, rather than a stable property of the brain (for 
alternative interpretations, see (233). Many of these edge-centric features can be reproduced 
using static, node-centric, null models (234).  

In spite of the many varieties of dynamics observed, the evidence suggests that brain 
networks may reflect minimal “atoms” of connectivity; by and large moment-to-moment co-
fluctuations respect the membership to canonical intrinsic networks. In other words, brain 
regions do not co-fluctuate in random sets. Rather, different recombinations of intrinsic networks 
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describe whole-brain spatial patterns of connectivity from moment-to-moment, while 
maintaining the atoms as a relatively continuous feature, thus cumulatively generating the static 
functional connectome organization. 
 
3.6 Interim conclusion 

In this section, we reviewed five significant issues which directly impact the formulation 
of a universal taxonomy of large-scale brain networks. These issues included the spatial scale 
and hierarchical organization of networks, inter-individual variability, the consideration of 
subcortical structures, multimodal evidence, and brain dynamics. It is important to emphasize 
that each of these areas represent ongoing programs of research from multiple labs, including 
members of WHATNET. Given the plurality of ongoing discoveries necessary to arrive at 
consensus, and the multitude of plausible solutions given the existing evidence, a universal 
taxonomy could not be agreed upon at the time of writing this report. In light of these issues, we 
do not provide concrete recommendations for network nomenclature. However, there was broad 
agreement on reporting guidelines and avenues for future research to conduct in order to more 
efficiently integrate current and future findings together towards a broader consensus of large-
scale network topography. 
 

4. Towards minimal reporting guidelines for network results  
 
 The original COBIDAS report included recommendations and a checklist for sharing 
statistical maps and for reporting functional connectivity results (15). Specifically, the guidelines 
suggested that for ICA results, researchers should report the total number of components 
analyzed, and the rationale for their selection. For graph analyses, the recommendation was to 
state the null hypothesis of the test and how the statistic distribution under the null was 
computed. We concur that these are important pieces of information to include in results sections 
of manuscripts. As we have discussed throughout, coming up with a complete checklist of 
reporting guidelines similar to that in the original COBIDAS report that is specific for network 
neuroscience results is no simple task. Here we summarize some points of consensus amongst 
WHATNET members regarding best practices for reporting results from studies in which large-
scale brain networks are investigated (Box 1).   
 There is a growing use of network-based approaches to identify large-scale brain 
networks from task fMRI data in cognitive neuroscience. Researchers often compute functional 
connectivity from task fMRI data to reveal how large-scale brain networks respond to 
experimental manipulation (235). Still, one point for researchers conducting task-based fMRI to 
keep in mind is that the results of a univariate general linear model (GLM) contrast between two 
cognitive conditions does not necessarily equate to a network, however tempting it may be to use 
network nomenclature to describe activation results when they spatially resemble other large-
scale brain networks that have been described in the literature. One suggestion from this group is 
to avoid giving descriptive cognitive names to networks, particularly when describing 
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idiosyncratic cognitive domains (e.g. reward network, pain network). In this way, we can avoid 
proliferation of network naming terminologies and more readily compare results across studies. 
For example, large-scale brain networks occupying the territory of the lateral frontoparietal area 
have been variably referred to as the central executive or executive control network (2), the 
multiple-demand system (236), the extrinsic mode network (237), the domain general system 
(238), the frontoparietal control network (239,240), and the cognitive control network (241). Our 
own survey showed that these networks were among the least agreed-upon among independent 
raters. We suggest that naming networks by a single purported cognitive function is antithetical 
to the goal of understanding the broad role large-scale brain networks play in cognition, and 
hinders the development of a universal taxonomy.  

The suggestion instead would be to evaluate any new findings, whether in the task fMRI 
or resting state fMRI domain, against one or more commonly-used parcellation schemes. This 
recommendation extends to large-scale connectivity in electrophysiological data (cf. Section 
3.4), in spite of the fact that the currently common parcellation schemes are derived from fMRI.  
Given a previously published parcellation and a set of functional maps, one can determine the 
extent to which a novel functional map overlaps with a predefined atlas (242) (Figure 7). In 
doing so, we suggest that one clearly state which reference atlas is being utilized, and whether 
the demographic characteristics of the individuals used to make that atlas match the 
characteristics of the group from which the novel data were obtained. Acknowledgement of 
potential sources of variability should be openly discussed. Probabilistic atlases such as (79) can 
in some cases be referenced to note what types of individual differences might be expected, and 
discuss how this might affect the network designations in any new report. For example, one 
might exercise more caution in applying the “frontoparietal network” label than the “visual 
network” label given the greater potential variability in the former than in the latter.  

Complimentary anatomical labels may be specified alongside functional atlas-based 
labels in some cases to provide additional information (14). That way, if a new study reports 
findings relevant to a scholar interested in following research on a given large-scale brain 
network, the results will be more readily discoverable. Researchers should clearly report which 
atlas or parcellation scheme was used, and follow the original COBIDAS guideline regarding 
which space the findings are reported in, as well as the guidelines for sharing raw data and maps.  
 An additional guideline from this workgroup relates to the discussion in Section 3.5 on 
brain dynamics. When defining or describing networks in a particular study, one should consider 
that large-scale brain networks undergo functionally relevant spatial variations across time and 
cognitive contexts, and consequently may not fully match standard network parcellations derived 
from static resting state fMRI data.  
 

5. Unresolved issues and future directions  
 

We have aimed to cover a range of literature relevant to the problem of building a 
universal taxonomy of large-scale brain networks. However, we readily acknowledge that this 
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manuscript should be considered a living document, subject to continuous revision to incorporate 
new data and theoretical frameworks as they become available. Note that here, we provide 
recommendations for the types of information that we suggest network neuroscience papers 
should report going forward. Unlike the 2019 taxonomy proposal (14), however, we do not 
provide recommendations for specific names and labels to give to large-scale brain networks in 
future studies. For the reasons outlined throughout, we now believe that a strictly anatomical 
labeling scheme may in some cases fail to capture aspects of individual variability and brain 
dynamics that are as yet open questions for the field. Still, we contend that a strictly functional 
scheme would likewise be insufficient, given the plurality of functions subserved by nearly every 
large-scale brain network that has been identified to date. 

As alluded to earlier, the field is only beginning to tackle the issue of how best to 
categorize large-scale brain networks in developmental, aging, and clinical populations. This is 
particularly problematic given that network fractionation appears to be observable both in early 
development (144) and in aging/late life (145). This issue has been addressed in the 
developmental neuroimaging literature using study-specific templates for normalization (243). 
One can imagine an analogous scenario in which study-specific parcellations might be 
appropriate for a specific research question, such as studying a developmental cohort (244).  

With regards to network variability as observed in clinical populations, several open 
questions remain. For example, if we see that a portion of a network is missing consistently in a 
clinical group, does this tell us something about the “core” components of that network? It is not 
always clear whether differences observed in clinical populations index loss of function, 
decreased efficiency, or compensatory reorganization processes associated with recovery. 

We have not yet attempted to consider relevant cross-species comparisons in the current 
work. There is increasing evidence, for example, that an analogue of the human default network 
can be identified in non-human primates (245) and rodents (246). Understanding these cross-
species convergences may help further delineate large-scale network properties in the human 
brain by permitting investigation of the degree to which network topologies are evolutionarily 
conserved (247).  

A subset of the WHATNET group is currently working on a tool that will allow users to 
quantify the spatial overlap between their findings and one (or more) of 16 commonly used 
parcellation schemes (242). This tool will provide a means for mapping between any given set of 
new results and one or several widely used brain atlases for reporting purposes. We suggest that 
this type of atlas-referenced reporting should become the norm for future investigations.  

Finally, we suggest that the field of cognitive neuroscience might make rapid progress 
towards the goals of WHATNET by adopting the practice of adversarial collaboration, whereby 
investigators committed to different theoretical views collaborate to test opposing predictions. 
Our survey of the neuroimaging community revealed the least amount of agreement among 
raters when they were naming networks involving frontoparietal and midcingulo-insular cortical 
areas. One suggestion would be for researchers who have coined particular network names such 
as “salience” (2), “cingulo-opercular” (239) and “ventral attention” (248) to collaborate to design 
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a set of experiments that would engage the putative cognitive functions associated with each of 
these large-scale brain networks. Collaborative efforts of this type may help resolve ambiguities 
and inconsistencies going forward. Adversarial collaborations are currently under way in the 
field of consciousness research, which has for years been fragmented due to multiple theoretical 
perspectives (249). We envision that well-planned, preregistered cognitive neuroscience 
investigations that more closely map large-scale brain networks to cognitive processes might 
help reduce the proliferation of network names going forward.  

 
 

 

 
 
 
Figure 7. Ten representative group-level functional brain network atlases. In this example, 
Yeo’s 17-network atlas serves as the reference atlas, and all other atlases are projected to the 
same space to compute overlap with the reference network (from(242)).  
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Box 1. Recommendations for reporting network results 
1) Task fMRI contrasts derived from univariate GLM analysis do not necessarily comprise a 
network 
2) Avoid labeling patterns of brain activity or connectivity with only an idiosyncratic cognitive 
term 
3) To determine network affiliations of novel findings, use and reference one or more existing 
parcellation schemes 
4) Report sample variation from the population used to generate the reference parcellation 
scheme 
5) Consider supplementing atlas labels with additional anatomical network labels (such as those 
proposed in (14)) for ease of integration across studies 
6) Follow COBIDAS reporting guidelines (15) for connectivity analysis 
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