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Abstract 

Prominent theories of cognitive effort-based decision-making posit that shared brain regions 

process both potential reward and task demand, supporting the idea that effort allocation are 

informed by a cost-benefit trade-off, weighing the expected benefits of successful control against 

the inherent costs of effort exertion. While the dorsal anterior cingulate cortex (dACC) has been 

proposed as a candidate region supporting this decision, it remains unclear whether dACC activity 

tracks rewards and costs as independent quantities, or it reflects the effort intensity worth the 

integrated costs and benefits. While recent accounts of dACC function posit a crucial role the 

region in negotiating cost-benefit trade-offs, empirical evidence for this account remains scarce 

across single studies. To address this, we conducted a systematic meta-analysis review of 

neuroimaging studies, using activation-likelihood estimation method to quantify brain activity 

across 45 studies (N = 1273 participants) investigating reward-guided effort. We found reliable 

recruitment of the dACC, putamen, and anterior insula for processing both larger rewards and 

increasing task demands. However, the dACC clusters sensitive to task demands and rewards were 

anatomically distinct with no significant overlap: caudal dACC activity tracked increasing task 

demands, while rostral dACC activity tracked increasing rewards. Critically, we also observed that 

caudal dACC activity tracked the integration of costs and benefits, compatible with mental effort 

intensity account. These findings suggest there are distinct signals for demand and effort in the 

dACC which are also integrated to support the decision to invest effort, supporting recent 

computational accounts of cost-benefit value integration in effort-based choice. 
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Introduction 

How do we decide whether pursuing a reward is worth the mental effort required to 

obtain it? On the one hand, the experience of cognitive effort exertion is aversive (and often 

avoided), yet, on the other hand, individuals must often engage in effortful thinking to obtain 

rewards. Consequently, our decisions to engage in (versus avoid) cognitively costly processing 

often present a conflict between two opposing goals: maximizing rewards and minimizing the 

associated effort costs. To this point, prominent theories of motivated control posit that cognitive 

effort allocation decision-making requires the integration of the benefits (e.g., rewards) tied to 

effort exertion, the costs of effort, and the likelihood of successful performance (Frömer et al., 

2021; Kurzban et al., 2013; Shenhav et al., 2017; Silvetti et al., 2018). Indeed, a large and 

growing body of empirical work suggests that our decisions to allocate (versus withhold) effort 

result from an integration of costs and benefits. For example,  reward incentives motivate 

cognitive effort investment (Otto & Vassena, 2021; Westbrook & Braver, 2015), particularly for 

individuals with large effort costs (da Silva Castanheira et al., 2021; Sandra & Otto, 2018). 

Further, the subjective value of rewards—as evidenced by individuals’ choices between options 

with varying effort and reward levels—appears to be discounted by the effort required to earn 

these rewards (Chong et al., 2017; Otto & Vassena, 2021),  and people will even opt for a 

physically painful sensation over the prospect of exerting high levels of cognitive effort (Vogel 

et al., 2020).   

Influential theories suggests that the dorsal anterior cingulate cortex (dACC) plays a role 

in resolving these effort-reward trade-off by integrating specific neural signals representing both 

effort costs and anticipated rewards (Shenhav et al., 2013; Silvetti et al., 2018), with some debate 

regarding the dACC’s functional role (Shenhav et al., 2017; Vassena et al., 2017, 2020). 
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However, despite behavioral findings supporting the idea of an effort-reward trade off, the 

functional role of dACC in coding reward, effort cost, and/or the integration thereof, is less clear.  

In line with the predictions of cost-benefit accounts of dACC function (Shenhav et al., 

2013; Silvetti et al., 2018), some studies suggests that the dACC encodes both reward prospects 

and task demands. The anticipation of rewards has been consistently associated with greater 

activity in the dACC, anterior insula, thalamus, and ventral striatum (i.e., Nucleus Accumbens & 

Putamen; Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008). However, these 

observed patterns of neural activity were not specific to performance-contingent rewards, 

suggesting a general role for the dACC in encoding reward information. More recently, a meta-

analysis by Parro and colleagues (2018) investigated activation patterns underlying performance-

contingent reward incentives, finding reliable BOLD activity in the dACC, anterior insula, 

inferior frontal sulcus, and inferior parietal lobule in response to rewards. While both the dACC 

and anterior insula have been linked to subjective feelings of motivation on cognitive tasks, only 

the dACC has been found to encode integrated incentive values when performing effortful tasks 

(Yee et al., 2021). A parallel line of work has identified regions that encode costs associated with 

increasing task demands either during preparation for tasks or during task performance. When 

exerting control, increasing task demands engage the dACC, posterior parietal cortex, anterior 

insula, and prefrontal cortex (Laird et al., 2005; Niendam et al., 2012). When anticipating 

effortful tasks, activity in the dACC increased as a function of the subjective valuation of effort 

costs (Chong et al., 2017). Thus, activity in the dACC could either encode the effort level to be 

invested i.e., the integrated costs and benefits of effort exertion (Chong et al., 2017; Shenhav et 

al., 2016; Silvetti et al., 2018) or simply encode a representation of task demands (Lopez-

Gamundi et al., 2021).  
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Beyond simply tracking rewards and demand, the dACC has also been found to play a 

role in learning and monitoring task progress. For example, the dACC activity has been found to 

track to negative consequences of errors like negative feedback (i.e., response errors; Carter et 

al., 1998; Cole et al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004), and pain (Jahn et al., 

2016; Shackman et al., 2011). At the same time, the dACC has been found to play a role in 

monitoring the need for cognitive control (Botvinick, 2007; Venkatraman & Huettel, 2012), 

tracking prediction errors (Alexander & Brown, 2015; Brown & Alexander, 2017; Silvetti et al., 

2011),  and even coordinating effortful control over extended action sequences (Botvinick et al., 

2001; Holroyd & McClure, 2015). Together, these findings suggest a role for the dACC in 

learning of control signal specification to obtain rewards or avoid punishment (Shenhav et al., 

2016). Converging neurocomputational work on adaptive decision-making proposes that the 

dACC integrates costs and benefits through a meta-learning mechanism via interactions with 

catecholaminergic input from subcortical systems (the Reinforcement Meta Learner model; 

Silvetti et al. 2018). In this computational account, the dACC also contributes to the learning of 

optimal effort allocation over time (Verguts et al., 2015) and to other adaptive learning dynamics 

(i.e., control of learning rate, higher-order reinforcement learning, Silvetti et al. 2018). 

Importantly, most of these perspectives rely on the assumption that, to some extent, the dACC 

receives input signals indexing reward and cost to compute an integrated quantity (net value) that 

would guide decisions. This reward signal is supplied via midbrain dopaminergic input, as 

extensive work in animals has shown (Haber et al., 2006; Haber & Knutson, 2010). On the 

contrary, the source and neural representation of the cost signal remain highly debated (Holroyd, 

2015; Kurzban et al., 2013; Musslick & Cohen, 2021; Wiehler et al., 2022). Whether the cost of 

cognitive effort is encoded by dACC, and to what extent a reliable signal representing the control 
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signal intensity based on the integration of the costs and benefits is traceable in dACC activity, 

remains unclear. 

 

Figure 1 Hypothesized patterns of dACC BOLD signal based on what this signal is thought to 

reflect: costs only, benefits only, or the effort investment based on the expected value of control. 

For the reward model, where dACC activity is posited to only reflect reward prospects, BOLD 

signal is predicted to increase simply as a function of performance-contingent rewards. For the 

cost model, where dACC activity is posited to only reflect costs, BOLD signal is predicted to 

increase only as a function of task demands. And for the integration models, where dACC activity 

reflects the intensity of the control signal or effort to be invested, BOLD signal is predicted to 

increase in response to higher rewards and higher levels of task demands. 

 

However, individual studies are limited in their ability to draw conclusions on the neural 

representation of rewards and effort, particularly due to heterogeneity in both the putative 

cognitive processes required by tasks, and the reward prospects used to study motivated 

behaviour. This variability across studies is especially relevant in the case of inconsistent 

findings, often leading to robust debates in the literature—for example, in the case of the dACC 

(Ebitz & Hayden, 2016; Vassena et al., 2017). Meta-analytic synthesis offers the opportunity to 

isolate reliable effects of interest, allowing for joint investigation of parametric manipulations of 

demand and reward levels across multiple studies (Yarkoni et al., 2010). Here, we used the 

activation-likelihood estimation meta-analytic technique (Eickhoff et al., 2012), synthesizing 
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brain activity across 45 studies, to examine whether the predictions of the cost-benefit account of 

dACC function are supported across diverse manipulations of cognitive effort and reward. By 

looking across studies that manipulated both demand level (i.e., effort cost) and performance-

contingent rewards, the present meta-analysis allows us to examine whether aggregate dACC 

activity is associated with effort investment reflecting an integrated representation of costs and 

benefits, versus a representation of only costs (or only benefits). 

Importantly, these different possibilities lead to contrasting hypotheses about the patterns 

of possible association between dACC activity, task demand and reward level (see Figure 1). If 

dACC activity only reflects performance-contingent rewards, BOLD responses should increase 

monotonically with larger rewards but not higher task demands (see Figure 1, left panel). And if 

dACC activity reflects only raw effort costs, BOLD responses should increase monotonically 

with higher task demands but not larger rewards (see Figure 1, middle panel). However, if dACC 

activity reflects the control signal intensity, i.e., effort to be invested, then BOLD responses 

should depend collectively on costs, and demands. For example, in the Expected Value of 

Control (EVC) model (Shenhav et al., 2013), dACC activity is posited to increase with larger 

rewards and higher task demands (i.e., scales positively with net value; see Figure 1, right panel; 

Silvestrini et al., 2022). Little work has jointly assessed the neural representations underlying 

processing both prospective rewards and cognitive demand overlap. Yet, studies who have 

jointly investigated rewards and task demands have only observed increases in dACC BOLD 

activity for both larger rewards and task demands (Vassena et al. 2014). However, this study may 

be limited in its ability to capture the net-value discounting computation, as they contrasted 2 

demand levels with high overall accuracy (>90%), in so far that exerting effort was mostly 
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rewarding (see Figure 1). In sum, whether dACC simply tracks effort costs, or integrates reward 

and demand information into a net value has yet to be corroborated.  

While two previous meta-analyses have found inconsistent results in overlapping regions 

of the dACC—finding that BOLD signal in the dACC decreases with increasing net value 

(Lopez-Gamundi et al., 2021), and increases as a function of available rewards (Parro et al., 

2018)—we sought jointly and systematically examine task demands and rewards. Motivated by 

the inconsistency in the posited functional role of the dACC, the current meta-analysis aims to 

disentangle the common and unique patterns of activation observed across several fMRI studies 

which independently manipulate reward prospects tied to effort exertion, and task demands 

across a variety of operationalizations of cognitive demand and reward. Using this approach, we 

can assess i) the regions uniquely involved in processing rewards, ii) the regions uniquely 

involved in processing task demands and iii) the regions involved in both processes. We further 

assess the regions which track the interaction between reward and demand signals, encoding the 

integrated value of effort investment. Based on cost-benefit models of effort decision-making 

(Shenhav et al., 2013; Silvetti et al., 2018), we predict the dACC will not only serve to 

independently track the costs and benefits of effort but also serve to integrate these signals 

reflecting the effort level deemed worthy of investing.  

Materials and Methods 

Literature Search 

We conducted a systematic review of functional magnetic resonance imaging (fMRI) 

cognitive control studies which experimentally manipulated either available rewards, task 

demand, or both. Our literature search and exclusion process are depicted in the flow chart in 

Figure 1. We searched for articles published prior to August 11th, 2022, on the online databases 
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PubMed/MEDLINE, Web of Science, and PsychINFO, with abstracts, titles, and keywords 

matching the following search string: ("REWARD*" OR "MONETARY INCENTIVE*" OR 

"MOTIVAT*" OR "INCENTIV*") AND ("COGNITIVE EFFORT" OR "MENTAL EFFORT" 

OR "COGNITIVE CONTROL" OR "EXECUTIVE FUNCT*" OR "WORKING MEMORY" 

OR "INHIBIT*" OR "SET SHIFTING" OR "SET-SHIFTING" OR "TASK SWITCHING" OR 

"TASK-SWITCHING" OR "LOAD" OR ”COGNITIVE LOAD" OR "DIFFICULT*" OR 

"EFFORT* " OR " DEMAND* ") AND ("FMRI" OR "FUNCTIONAL MAGNETIC 

RESONANCE IMAGING" OR "BRAIN IMAGING" OR “MRI”) AND ("HUMAN*" OR 

"PARTICIPANT*" OR "ADULT*” OR “SUBJECT*”). This search yielded 3318 articles. We 

further included 82 articles which were obtained from manually searching the reference list of 

previous coordinate-based meta-analyses on either reward processing or effortful control (see 

Figure 1) (Diekhof et al., 2012; Laird et al., 2005; Lopez-Gamundi et al., 2021; Parro et al., 

2018).  

We screened the identified articles for the following inclusion criteria: the studies must 

be 1) empirical investigations (i.e., not review articles); 2) employ fMRI; 3) be performed in 

healthy young adult humans; 4) estimate effects using GLMs over the whole brain with reported 

Montreal Neurologic Institute (MNI) or Talairach coordinates; 5) and report main effects of 

reward or demand on BOLD activity. To be included in the analysis, studies had to elicit a trade-

off between rewards and effort by independently manipulating both reward incentives and 

demand levels within subjects. For the reward manipulations, the reward had to be 1) 

instrumental (i.e., based on responses) 2) performance-contingent (i.e., not random) 3) mediated 

by the successful engagement of cognitive processes (e.g., attention, working memory, response 

inhibition, etc.) as opposed to physical exertion and 4) not serve as a distractor (e.g., Failing & 
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Theeuwes, 2017). For the demand manipulations, demand level had to be manipulated 

experimentally—note, here we assume increasing task demands require greater effort to resolve 

(Shenhav et al., 2013). Finally, we excluded any studies which did not provide coordinates 

estimated in a healthy young adult population (i.e., clinical, or older adults) or used ROI 

analyses. 

Using these criteria, a total of 45 articles were accepted, with 46 independent samples as 

one paper reported 2 experiments (Ursu et al., 2008). It should be noted that we obtained two 

independent sets of contrasts from one article (Kouneiher et al., 2009) as it reported the effects of 

both response preparation. Finally, one study collapsed analyses across young adults and 

adolescents which we chose to include (Magis-Weinberg et al., 2019). 

 

Figure 2 Flowchart of article screening and selection, following PRISMA guidelines. Adapted 

from (Page et al., 2021) Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow 

CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. 

BMJ 2021;372:n71. doi: 10.1136/bmj.n71 
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Coordinate based meta-analysis 

We ran a coordinate-based meta-analysis using the foci (i.e., coordinates in significant 

clusters) reported in the identified studies. To ensure all coordinates were in the same stereotaxic 

space, we transformed the coordinates reported in Talairach space to MNI space using the FSL 

transformation applied in GingerALE (Eickhoff et al., 2012). The x (left vs right) and y (anterior 

vs posterior) coordinates of one paper was identified as inverted based on the anatomical labels 

reported (Chikara et al., 2018), and accordingly, we multiplied these coordinates by -1 to convert 

them back into standard space. We excluded any coordinates identified to be outside the brain, 

this resulted in the removal of 3 foci (2 from Reward contrasts and 1 from Control contrasts), and 

a final sample of 429 foci for rewards and 460 foci for task demands (see Table 1). In addition, 

our literature search revealed 32 foci associated with deactivations for increasing reward 

prospects, 16 each from 2 studies (Krebs et al., 2012; Pochon et al., 2002) and 8 foci increasing 

task demands (Krebs et al., 2012). We opted to exclude these coordinates from the analysis given 

our specific interest in identifying regions encoding raw effort costs and reward value. 

We preformed meta-analyses using GingerALE (3.0.2; Eickhoff et al., 2009, 2012; 

availalble at www.brainmap.org/ale). The Activation Likelihood Estimation (ALE) algorithm 

computes convergence of activation across coordinates reported from whole-brain analysis. To 

do so, ALE models the spatial uncertainty of coordinates using 3-dimensional full width at half 

maximum (FWHM) gaussian kernels centered at the foci, with a width inversely proportional to 

the sample size. Thus, coordinates from studies with larger sample sizes are modeled with 

smaller Gaussian kernels, reflecting a more reliable approximation of the true spatial location of 

BOLD activity. Conversely, coordinates from studies with smaller sample sizes are modeled 

with larger Gaussian kernels, reflecting the uncertainty in the precise spatial location of activity. 
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Using these activation likelihood estimates, GingerALE computes the overlap of activation 

probabilities and determines voxels where there is a convergence significantly higher than 

expected if results were independently distributed. The resulting images can then be corrected for 

multiple comparisons, using cluster correction. For the purposes of our analysis, we chose a 

relatively conservative threshold (p < 0.05 FWE; 5000 permutations, p < 0.001 cluster forming 

threshold). 

To test whether both rewards and effort reliably engage the dACC, we estimated three 

separate meta-analyses on studies manipulating 1) rewards (36 studies, 920 participants); 2) task 

demands (38 studies, 1095 participants) and 3) reported interactions between rewards and task 

demands (15 studies, 418 participants). Additionally, we ran a conjunction/contrast analyses 

comparing reward to effort. Conjunction between two sets of coordinates can be assessed using 

the voxel-wise minimum value of the activation likelihood estimates (Eickhoff et al., 2012). 

Contrasting the two sets of coordinates is done by subtracting the activation likelihood estimates 

between images and calculating voxel-wise Z-scores of the differences against a permuted 

distribution (Eickhoff et al., 2012). These resulting Z-scored differences are then subject to 

cluster analysis. For our contrast analysis, we conducted 100,000 permutations, and set a 

threshold p < 0.01 FWE and minimum cluster size of 300mm3. 

Given the diversity of the studies included, both in terms of cognitive task and reward 

manipulation, it is critical that statistical power be considered. Currently, the inclusion of a 

minimum of 17-20 studies in a meta-analysis is recommended to ensure sufficient power to 

detect valid results, and prevent results from being driven by a single experiment (Eickhoff et al., 

2016; Müller et al., 2018). Our literature search revealed 45 studies (46 experiments), reporting a 

total of 36 reward contrasts and 38 demand contrasts of interest, resulting in 457 reward-related 
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foci and 491 demand-related foci (see Table 1). Of the 46 experiments included, 34 reported both 

reward and effort contrasts. A total of three reward contrasts, and one demand contrasts found no 

significant foci for their contrast of interest. In terms of reward contrasts, most reward contrasts 

(21 studies) compared reward to no reward, while fewer reported a contrast between high and 

low reward (14 studies) only three studies reported a parametric effect of reward, and one used a 

repetition suppression paradigm (see Table 2). Regarding effort contrasts, the most common 

method for manipulating task demands involved response inhibition (20 studies), followed by 

working-memory (12 studies), attention (7 studies) and task switching (6 studies; see Table 2). 

Two additional papers used arithmetic of different difficulty levels to manipulate task demands 

(Hernandez Lallement et al., 2014; Vassena et al., 2014). Critically, of the experiments which 

tested for reward effects on response times or accuracy (45 experiments), 9 tested accuracy 

difference, 16 tested response-time differences, 15 tested both, and 3 used effort discounting 

choice paradigms; most experiments reported significant improvements in task performance with 

increasing rewards (36 of 45 studies). 

Results 

BOLD response to rewards 

First, we sought to test which brain regions reliably encoded information about 

performance-contingent rewards. To this end, we assessed the converging patterns of brain 

activity in response reward contrasts and observed six clusters sensitive to performance-

contingent reward incentives whereby activity was found to increase in response to larger reward 

prospects. Our analysis revealed six clusters of activity across regions typically associated with 

reward-related processing (Bartra et al., 2013; Diekhof et al., 2012; Knutson & Greer, 2008)—

including the ventral striatum, the medial prefrontal, and Insular cortex. Bilaterally, we observed 
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two clusters encompassing the putamen and caudate, as well as a second cluster in the rostral 

portion of the dACC. We also found reliable patterns of activation in the right anterior insula and 

left inferior occipital cortex.  

BOLD response to task demand 

Next, we sought to test which brain areas encode raw effort costs by identifying regions 

where the activity shares a positive, monotonic relationship with increasing task demands. Our 

analysis revealed a reliable pattern of brain activity for increasing task demands which consisted 

of nine clusters across regions typically associated with cognitive control (Laird et al., 2005; 

Niendam et al., 2012)—the prefrontal, dorsal anterior cingulate, and parietal cortices. On the 

lateral aspect, we found two clusters in the left lateral PFC, one extending from the left middle 

frontal gyrus to the left precentral gyrus, and another located more dorsally in the left middle 

frontal gyrus, and one cluster in the right inferior frontal gyrus extending posteriorly to the 

precentral gyrus. Bilaterally, we observed robust activation of both the superior parietal lobule 

extending into the precuneus and the anterior insula. On the medial aspect of the brain, we 

observed reliable activation of the medial frontal gyrus, extending from the dACC into the 

Supplementary Motor Area. In the right hemisphere, our analysis revealed a reliable cluster in 

the thalamus. 
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Figure 3 Results of reward and effort ALE meta-analysis.  Brain areas showing 

converging activation for both increasing reward prospects and task demands, plotted in the 

volume (MNI152) with shades of green. Brain areas more activated by increasing task demands 

than reward prospects plotted in the volume (MNI152) with shades of blue . Brain areas more 

activated by increasing reward prospects than task demands plotted in the volume (MNI152) 

with shades of yellow.

 

Differences in BOLD response between reward versus demand 

Next, we evaluated the strength of evidence for the effort cost (Lopez-Gamundi et al., 

2021) and integrated cost-benefit (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al., 2018) 

accounts of dACC activity by assessing whether the patterns of unique and overlapping activity 

between reward- and demand-elicited activity. To assess the unique patterns of activity, we 
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contrasted BOLD responses which were more responsive to increasing reward prospects than 

increasing task demand. Our analysis revealed a cluster of 728mm3 in the rostral aspect of the 

dACC which was reliably engaged by increasing reward prospects more than increasing task 

demands (see Table 3, and yellow cluster depicted in Figure 3). Contrasting demands level with 

reward level, our analysis revealed a total of six clusters in which activity was more reliably 

engaged in processing increasing task demands than increasing rewards (see Table 3; and blue 

clusters depicted in Figure 3), including a cluster of 2056mm3 in the caudal portion of the dACC 

extending into the Supplementary Motor Area (see Table 3, and blue clusters depicted in Figure 

3). On the lateral aspect of the frontal lobe, our analysis revealed two clusters in the left middle 

frontal gyrus which extended anteriorly from the precentral gyrus, a second cluster on the more 

superior portion of the middle frontal gyrus and left inferior parietal lobule. Caudally, we 

observed three clusters more active in response to task demands than rewards in the left 

Precuneus, and bilaterally in the Inferior Parietal Lobule. In terms of overlapping patterns of 

BOLD responses, our conjunction analysis revealed one clusters where foci associated with both 

reward and task demand manipulations were found to converge (see Table 3, and green clusters 

depicted in Figure 4). We observed reliable overlap between reward- and demand-elicited BOLD 

activity in the right anterior insular cortex. Together, our analyses suggest a distinction between 

the dACC responses to rewards and task demands: across the task demand contrasts, foci 

converged in the caudal portion of the dACC, extending into the SMA, whereas reward foci 

converged in the rostral portion of the dACC. This distinction between reward and demand in the 

dACC provides preliminary evidence in favor of an effort cost representation as it is consistent 

with a positive relationship with task demands and no relationship with reward. Yet, these results 
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alone cannot differentiate between the posited functional roles of activity in the dACC without 

considering integrated value of rewards and task demands. 

 

Figure 4 Results of interaction (reward X effort) ALE meta-analysis.  Brain areas showing 

converging activation for the interaction between rewards and effort plotted in the volume 

(MNI152) with shades of red. Brain areas activated by task demands plotted in the volume 

(MNI152) with shades of blue. Blue clusters were rendered transparent to depict the overlap 

between clusters.

 

BOLD response to integrated cost-benefits  

 Next, we explored whether there were any reliable patterns of activation associated with 

the integrated cost-benefits of effort across 15 experiments (152 foci from 418 participants)—as 
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indexed by BOLD response correlated with either computed subjective value in effort 

discounting tasks (Chong et al., 2017; Massar et al., 2015; Westbrook et al., 2019) or by 

interactions between reward and task demands in reward-motivated control studies. Of interest, 

we sought to assess the strength of evidence that the dACC, beyond encoding the costs 

associated with increased cognitive effort, also encodes the effort level to be invested based on 

the integrated costs-benefits of exertion. Our analysis revealed two clusters in the frontal lobe, 

one on the lateral aspect encompassing the middle frontal gyrus, and one on the medial aspect 

extending form the SMA to the dACC (see Table 4, see the clusters depicted in warm colours in 

Figure 4). These two clusters representing the interaction between reward and demand were also 

found to partially overlap (568 mm3 for the medial cluster and 152mm3 for the lateral cluster) 

with the clusters previously identified as responsive increasing demands (Demand > Reward; see 

Figure 4). The first cluster, located in the medial frontal lobe, contained coordinates from four 

studies (Bahlmann et al., 2015; Padmala & Pessoa, 2011; Westbrook et al., 2019), three of which 

reported BOLD responses consistent with cost-benefit integration (see Figure 1 right panel). The 

second cluster, located in the lateral frontal lobe, contained coordinates from four studies (Chong 

et al., 2017; Leong et al., 2018; Padmala & Pessoa, 2010, 2011), two of which reported BOLD 

responses consistent with cost-benefit integration (see Figure 1 right panel). Thus, our analyses 

suggest that there is moderate evidence in support of dACC activity reflecting the integration of 

costs and benefits. 

Discussion 

A key tenet of recent neurocomputational accounts of effort-based decision-making 

proposing that activity in brain regions like the dACC reflect a trade-off between the costs and 

benefits of effortful cognitive processing (Silvetti et al., 2018; Verguts et al., 2015). Yet, the 
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precise functional role of the dACC in effortful behaviour remains unresolved as activity could 

simply reflect effort costs which covary with effort outlay (Vassena et al., 2017). Here, we 

carried out a meta-analysis of neuroimaging studies jointly manipulating cognitive demand and 

reward incentives, and assessed whether dACC activity reflects rewards, effort costs, or an 

integration of the two decision variables. Our analyses revealed that increasing task demands 

were associated with increasing activity the dACC, as well as both the lateral and parietal 

cortices—replicating extant work (Laird et al., 2005; Niendam et al., 2012). The prospect of 

larger reward was also observed to engage the dACC. Yet, we did not observe reliable overlap 

between the subregions of the dACC which coded for reward and effort. Instead, our analyses 

revealed two dissociable regions within dACC — the caudal portion tracking demand, and the 

rostral portion tracking reward, supporting the view that effort costs and rewards are represented 

separately in the brain. In support of an integrative cost-benefit signal, we found evidence for 

reliable engagement of the caudal dACC (Chong et al., 2017; Shenhav et al., 2013; Silvetti et al., 

2018; Soutschek & Tobler, 2020). Together, these results suggest anatomical specificity for the 

activity of the dACC: activity in the rostral region reflects increasing reward prospects, whereas 

activity in the caudal region reflects increases in task demand and an integrated signal reflecting 

both task demands and reward prospects, but rewards alone are not sufficient to elicit increased 

caudal dACC activity.  

 Broadly, our results provide a clearer understanding of the dACC’s role in motivating 

effortful action. Prominent theories of cognitive effort support cost-benefit models where the 

control signal intensity is determined by the dACC which integrates both information about 

available rewards and the cost associated to exerting control (Shenhav et al., 2013, 2016). 

aligned with extant work, we provide indication for a role of the dACC in tracking both effort 
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costs (Lopez-Gamundi et al., 2021) and the control signal intensity afforded by the integrated 

value of effort and reward (Chong et al., 2017; Shenhav et al., 2013, 2016; Silvetti et al., 2018). 

Despite the observed integration in the dACC, we did not find a reliable overlap between for 

large reward and high demand in the dACC, unlike Vassena et al. (2014). Perhaps this previous 

overlap was observed due to the overall high accuracy of the two contrasted demand levels, 

thereby making effort exertion mostly rewarding. This raises the possibility that the probability 

of reward given effort exertion may also modulate dACC activity (Frömer et al., 2021; Grahek et 

al., 2022; Otto et al., 2022). At the same time, previous work which characterizes the dACC as 

playing a critical role in monitoring the need for cognitive control (Botvinick, 2007; 

Venkatraman & Huettel, 2012), but also linked to individuals’ avoidance of effort (McGuire & 

Botvinick, 2010), and effort-discounted rewards (Chong et al., 2017). Indeed, the results of our 

meta-analysis suggest that region of the dACC tracking the integrated cost-benefit signal also 

overlapped with the region tracking increasing task demands. Perhaps this overlap reflects the 

monotonic relationship between task demands and effort investment we assumed—that is, to 

achieve equivalent performance on tasks of differing demands, greater effort should be expended 

on the more demanding task. Given that the region tracking integrated cost-benefits and task 

demands overlapped, this suggests that a great deal of the high demand tasks used in this meta-

analysis were difficult but achievable i.e., high effort was invested for harder tasks. However, 

this operationalization, which underlies a deal of research on cognitive effort, may not always be 

satisfied when greater effort does not yield better performance or when participants are given 

impossible tasks (Otto et al., 2021; Silvestrini et al., 2022).  

At the same time, converging neurocomputational work suggests that the dACC 

contributes to learning the optimal control signal specification (Silvetti et al., 2018; Verguts et 
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al., 2015) by also tracking negative feedback (i.e., response errors) (Carter et al., 1998; Cole et 

al., 2009; Ito et al., 2003; Ridderinkhof et al., 2004). Recent work has outlined the importance of 

response efficacy—the relationship between effort and performance—in the decision to expend 

effort (Frömer et al., 2021). Under certain conditions, increasing effort allocation need not yield 

improved task performance implying a non-monotonic relationship between effort and 

performance. For example, for an impossible task where greater exertion would not improve 

performance, participants may choose to withhold effort. Indeed, some previous work has 

implicitly taken advantage of the marginal value of effort by contrasting performance-contingent 

to random rewards (Frömer et al., 2021; Shenhav et al., 2013; Späti et al., 2014). On this view, 

effort should only be invested when increasing effort investment confers larger performance 

benefits—i.e., the marginal value of effort (Otto et al., 2021). This distinction between effort and 

demand is reified in established accounts of motivated behavior such as Motivation intensity 

theory (Brehm & Self, 1989) which posit that the prospect of larger rewards does not 

unwaveringly improve performance but may depend on the efficacy of effort exertion in 

improving task performance. As such, previous work has noted performance decrements in 

response to larger reward prospects (Lee & Grafton, 2015). Cost-benefit models, which suggest 

increasing dACC reflects a license for effort, predict that activity in the dACC should vary 

depending on the response efficacy (Frömer et al., 2021; Shenhav et al., 2013). When the task is 

feasible at high demand levels, dACC activity should grow monotonically with task demands. 

When the task is impossible (i.e., high demand), dACC activity should elicit an inverted-U 

pattern, with a drop in engagement when demand is too high. Together, these predictions could 

explain how increases in task demand—which purportedly decrease the net value of effort—

were associated with both increases and decreases in dACC activity in the literature. Beyond 
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dACC activity, other physiological measures like cardiovascular reactivity (see Wright, 2008 for 

discussion), pupil dilation (da Silva Castanheira et al., 2021), and facial muscle activity 

(Cacioppo et al., 1985; de Morree & Marcora, 2010; Van Boxtel & Jessurun, 1993) have been 

proposed as a method for indirectly measuring effort exertion. To reconcile these conflicting 

findings regarding the functional role of the dACC in effortful behaviour, future work should 

approach triangulation by jointly considering rewards, task demands and efficacy alongside 

neural activity, and psychophysiological measures of effort exertion. 

It is also worth noting that the studies examined in this meta-analysis were constrained to 

those which used monetary incentives to motivate cognitive effort. Beyond cognitive control, 

previous work has found evidence for the dACC’s involvement in processing and integrating 

both primary and secondary rewards (Yee et al., 2021). Similarly, the dACC has been found to 

integrate information about physical effort (Chong et al., 2017), pain and negative affect 

(Shackman et al., 2011). While cost-benefit models posits that the dACC integrates signals 

reflecting general costs and benefits, more work is needed to understand whether this pattern 

generalizes to other stimuli—particularly as there is some evidence for an anterior-posterior 

gradient of functional specialization from strategic to response-related conflict (Alexander & 

Brown, 2015; Venkatraman et al., 2009). The results of our reward-demand contrast analysis—in 

which the rostral portion of the dACC was found to respond more reliably to rewards while the 

caudal portion responds to demand—coincides with previous work which has also functional 

specialization of the dACC: a cognitive-affective gradient moving from caudal to rostral dACC 

(Bush et al., 2000). However, these distinctions have been inconsistent as others have found 

cognitive demand, affect and pain to overlap in the same region (Shackman et al., 2011). Thus, 

more work is needed to better understand the functional organization of the dACC. 
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The decision to invest effort is thought to rely on the coordinated activity between several 

brain regions (Ullsperger et al., 2014). While the literature as well as theoretical developments 

have strongly focused on ACC, empirical evidence indicates that other region may be sensitive 

to both manipulations of reward and effort and can play a role in resolving cost-benefit trade-

offs. For example, the LPFC is thought to be involved in maintaining task relevant information 

in working-memory (Braver, 2012; Burgess & Braver, 2010) and executing cognitive control 

more generally (Miller & Cohen, 2001). While we found the LPFC was reliably engaged by 

increasing task demands suggesting a role in cognitive control implementation, we also found 

that the LPFC was sensitive to integrated effort-reward signals. Aligned with these results, recent 

work suggests the lateral prefrontal cortex (LPFC) may encode the capacity to successfully meet 

task demands, thereby representing the probability of successfully receiving rewards (Soutschek 

& Tobler, 2020). The anterior insula, often coactive with the dACC (Bartra et al., 2013; Diekhof 

et al., 2012; Parro et al., 2018), is also thought to be engaged in monitoring the need for control 

(Shenhav et al., 2016). Supporting this view, we found anterior insula was reliably engaged by 

both increasing task demands and reward prospects—suggesting a broader role of the region in 

processing salient events (i.e., arousal; Uddin, 2015) and subjective awareness (Craig, 2002), 

both of which are foundational to effort allocation. Together, these results suggest a role for the 

anterior insula in monitoring one’s current state and detecting changes in the need for control 

(Nelson et al., 2010) and a role in cognitive processes more generally (Uddin et al., 2014). The 

ventral striatum, although typically thought of as a reward-processing region (Diekhof et al., 

2012), has been shown to be sensitive to effort costs in the absence of rewards (Schouppe et al., 

2014; Vassena et al., 2014). In terms of the Basal Ganglia, the Ventral Striatum was reliably 

engaged in processing rewards and effort whereas an overlap was not found in the dACC. 
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Previous work has shown a negative coupling between reward-related processing in the ventral 

striatum and dACC activation (Botvinick et al., 2009). Together with the literature, our results 

support the notion that the dACC along with a coordinated set of regions are involved in the 

integration of effort costs and the benefits conferred by rewards. Yet, given ALE-coordinate 

based analyses preclude network interpretations, our results are limited in their ability to draw 

conclusions on the coordination of regions. Thus, future work should aim to disentangle the 

underlying network dynamics contributing to the decision to expend effort. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 25 

References 

 

Alexander, W. H., & Brown, J. W. (2015). Hierarchical error representation: A computational 

model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 

27(11), 2354–2410. 

Bahlmann, J., Aarts, E., & D’Esposito, M. (2015). Influence of motivation on control hierarchy 

in the human frontal cortex. Journal of Neuroscience, 35(7), 3207–3217. 

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based 

meta-analysis of BOLD fMRI experiments examining neural correlates of subjective 

value. Neuroimage, 76, 412–427. 

Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two 

perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral 

Neuroscience, 7(4), 356–366. 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 

monitoring and cognitive control. Psychological Review, 108(3), 624. 

Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus 

accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 16–27. 

https://doi.org/10.3758/CABN.9.1.16 

Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. 

Trends in Cognitive Sciences, 16(2), 106–113. 

Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review of Psychology, 

40(1), 109–131. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 26 

Brown, J. W., & Alexander, W. H. (2017). Foraging value, risk avoidance, and multiple control 

signals: How the anterior cingulate cortex controls value-based decision-making. Journal 

of Cognitive Neuroscience, 29(10), 1656–1673. 

Burgess, G. C., & Braver, T. S. (2010). Neural mechanisms of interference control in working 

memory: Effects of interference expectancy and fluid intelligence. PloS One, 5(9), 

e12861. 

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior 

cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222. 

Cacioppo, J. T., Petty, R. E., & Morris, K. J. (1985). Semantic, evaluative, and self‐referent 

processing: Memory, cognitive effort, and somatovisceral activity. Psychophysiology, 

22(4), 371–384. 

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). 

Anterior cingulate cortex, error detection, and the online monitoring of performance. 

Science, 280(5364), 747–749. 

Chikara, R. K., Chang, E. C., Lu, Y.-C., Lin, D.-S., Lin, C.-T., & Ko, L.-W. (2018). Monetary 

Reward and Punishment to Response Inhibition Modulate Activation and 

Synchronization Within the Inhibitory Brain Network. Frontiers in Human Neuroscience, 

12, 27. https://doi.org/10.3389/fnhum.2018.00027 

Chong, T. T.-J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain, M. (2017). 

Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS 

Biology, 15(2), e1002598. 

Cole, M. W., Yeung, N., Freiwald, W. A., & Botvinick, M. (2009). Cingulate cortex: Diverging 

data from humans and monkeys. Trends in Neurosciences, 32(11), 566–574. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 27 

Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of 

the body. Nature Reviews Neuroscience, 3(8), 655–666. https://doi.org/10.1038/nrn894 

da Silva Castanheira, K., LoParco, S., & Otto, A. R. (2021). Task-evoked pupillary responses 

track effort exertion: Evidence from task-switching. Cognitive, Affective, & Behavioral 

Neuroscience, 21(3), 592–606. 

de Morree, H. M., & Marcora, S. M. (2010). The face of effort: Frowning muscle activity reflects 

effort during a physical task. Biological Psychology, 85(3), 377–382. 

Diekhof, E. K., Kaps, L., Falkai, P., & Gruber, O. (2012). The role of the human ventral striatum 

and the medial orbitofrontal cortex in the representation of reward magnitude–An 

activation likelihood estimation meta-analysis of neuroimaging studies of passive reward 

expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266. 

Ebitz, R. B., & Hayden, B. Y. (2016). Dorsal anterior cingulate: A Rorschach test for cognitive 

neuroscience. Nature Neuroscience, 19(10), 1278–1279. 

Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood 

estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. 

https://doi.org/10.1016/j.neuroimage.2011.09.017 

Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). 

Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A 

random-effects approach based on empirical estimates of spatial uncertainty. Human 

Brain Mapping, 30(9), 2907–2926. https://doi.org/10.1002/hbm.20718 

Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., Bzdok, D., 

& Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 28 

estimation characterized by massive empirical simulation. NeuroImage, 137, 70–85. 

https://doi.org/10.1016/j.neuroimage.2016.04.072 

Failing, M., & Theeuwes, J. (2017). Don’t let it distract you: How information about the 

availability of reward affects attentional selection. Attention, Perception, & 

Psychophysics, 79(8), 2275–2298. 

Frömer, R., Lin, H., Wolf, C. D., Inzlicht, M., & Shenhav, A. (2021). Expectations of reward and 

efficacy guide cognitive control allocation. Nature Communications, 12(1), 1–11. 

Grahek, I., Frömer, R., Prater Fahey, M., & Shenhav, A. (2022). Learning when effort matters: 

Neural dynamics underlying updating and adaptation to changes in performance efficacy. 

Cerebral Cortex, bhac215. https://doi.org/10.1093/cercor/bhac215 

Haber, S. N., Kim, K.-S., Mailly, P., & Calzavara, R. (2006). Reward-related cortical inputs 

define a large striatal region in primates that interface with associative cortical 

connections, providing a substrate for incentive-based learning. Journal of Neuroscience, 

26(32), 8368–8376. 

Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human 

imaging. Neuropsychopharmacology, 35(1), 4–26. 

Hernandez Lallement, J., Kuss, K., Trautner, P., Weber, B., Falk, A., & Fliessbach, K. (2014). 

Effort increases sensitivity to reward and loss magnitude in the human brain. Social 

Cognitive and Affective Neuroscience, 9(3), 342–349. https://doi.org/10.1093/scan/nss147 

Holroyd, C. B. (2015). The waste disposal problem of effortful control. In Motivation and 

cognitive control (pp. 247–272). Routledge. 

Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent 

medial frontal cortex: A computational model. Psychological Review, 122(1), 54. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 29 

Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the 

anterior cingulate cortex during saccade countermanding. Science, 302(5642), 120–122. 

Jahn, A., Nee, D. E., Alexander, W. H., & Brown, J. W. (2016). Distinct regions within medial 

prefrontal cortex process pain and cognition. Journal of Neuroscience, 36(49), 12385–

12392. 

Knutson, B., & Greer, S. M. (2008). Anticipatory affect: Neural correlates and consequences for 

choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 

363(1511), 3771–3786. 

Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the 

human prefrontal cortex. Nature Neuroscience, 12(7), 939–945. 

https://doi.org/10.1038/nn.2321 

Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The 

involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the 

integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 

607–615. 

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of 

subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679. 

Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & 

Fox, P. T. (2005). A comparison of label‐based review and ALE meta‐analysis in the 

Stroop task. Human Brain Mapping, 25(1), 6–21. 

Lee, T. G., & Grafton, S. T. (2015). Out of control: Diminished prefrontal activity coincides with 

impaired motor performance due to choking under pressure. Neuroimage, 105, 145–155. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 30 

Leong, J. K., MacNiven, K. H., Samanez-Larkin, G. R., & Knutson, B. (2018). Distinct neural 

circuits support incentivized inhibition. NeuroImage, 178, 435–444. 

https://doi.org/10.1016/j.neuroimage.2018.05.055 

Lopez-Gamundi, P., Yao, Y.-W., Chong, T. T., Heekeren, H. R., Herrero, E. M., & Pallares, J. M. 

(2021). The neural basis of effort valuation: A meta-analysis of functional magnetic 

resonance imaging studies. BioRxiv. 

Magis-Weinberg, L., Custers, R., & Dumontheil, I. (2019). Rewards Enhance Proactive and 

Reactive Control in Adolescence and Adulthood. Social Cognitive and Affective 

Neuroscience, 14(11), 1219–1232. https://doi.org/10.1093/scan/nsz093 

Massar, S. A., Libedinsky, C., Weiyan, C., Huettel, S. A., & Chee, M. W. (2015). Separate and 

overlapping brain areas encode subjective value during delay and effort discounting. 

Neuroimage, 120, 104–113. 

McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the 

registration of decision costs. Proceedings of the National Academy of Sciences, 107(17), 

7922. https://doi.org/10.1073/pnas.0910662107 

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual 

Review of Neuroscience, 24(1), 167–202. 

Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., Tench, C. R., 

Yarkoni, T., Nichols, T. E., Turkeltaub, P. E., Wager, T. D., & Eickhoff, S. B. (2018). Ten 

simple rules for neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 

84, 151–161. https://doi.org/10.1016/j.neubiorev.2017.11.012 

Musslick, S., & Cohen, J. D. (2021). Rationalizing constraints on the capacity for cognitive 

control. Trends in Cognitive Sciences, 25(9), 757–775. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 31 

Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, 

S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain 

Structure and Function, 214(5), 669–680. https://doi.org/10.1007/s00429-010-0260-2 

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). 

Meta-analytic evidence for a superordinate cognitive control network subserving diverse 

executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. 

Otto, A. R., Braem, S., Silvetti, M., & Vassena, E. (2021). Learning the marginal value of mental 

effort over time. 

Otto, A. R., Braem, S., Silvetti, M., & Vassena, E. (2022). Is the juice worth the squeeze? 

Learning the marginal value of mental effort over time. Journal of Experimental 

Psychology: General. 

Otto, A. R., & Vassena, E. (2021). It’s all relative: Reward-induced cognitive control modulation 

depends on context. Journal of Experimental Psychology: General. 

Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response 

inhibition. Neuropsychologia, 48(2), 558–565. 

Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and 

biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–

3432. 

Parro, C., Dixon, M. L., & Christoff, K. (2018). The neural basis of motivational influences on 

cognitive control. Human Brain Mapping, 39(12), 5097–5111. 

Pochon, J., Levy, R., Fossati, P., Lehericy, S., Poline, J., Pillon, B., Le Bihan, D., & Dubois, B. 

(2002). The neural system that bridges reward and cognition in humans: An fMRI study. 

Proceedings of the National Academy of Sciences, 99(8), 5669–5674. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 32 

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the 

medial frontal cortex in cognitive control. Science, 306(5695), 443–447. 

Sandra, D. A., & Otto, A. R. (2018). Cognitive capacity limitations and Need for Cognition 

differentially predict reward-induced cognitive effort expenditure. Cognition, 172, 101–

106. 

Schouppe, N., Demanet, J., Boehler, C. N., Ridderinkhof, K. R., & Notebaert, W. (2014). The 

role of the striatum in effort-based decision-making in the absence of reward. Journal of 

Neuroscience, 34(6), 2148–2154. 

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. 

(2011). The integration of negative affect, pain and cognitive control in the cingulate 

cortex. Nature Reviews Neuroscience, 12(3), 154–167. 

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An 

integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. 

Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the 

value of control. Nature Neuroscience, 19(10), 1286. 

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. 

(2017). Toward a rational and mechanistic account of mental effort. Annual Review of 

Neuroscience, 40, 99–124. 

Silvestrini, N., Musslick, S., Berry, A. S., & Vassena, E. (2022). An integrative effort: Bridging 

motivational intensity theory and recent neurocomputational and neuronal models of 

effort and control allocation. Psychological Review. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 33 

Silvetti, M., Seurinck, R., & Verguts, T. (2011). Value and prediction error in medial frontal 

cortex: Integrating the single-unit and systems levels of analysis. Frontiers in Human 

Neuroscience, 5, 75. 

Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-

brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 

14(8), e1006370. 

Soutschek, A., & Tobler, P. N. (2020). Causal role of lateral prefrontal cortex in mental effort and 

fatigue. Human Brain Mapping, 41(16), 4630–4640. 

Späti, J., Chumbley, J., Brakowski, J., Dörig, N., Grosse Holtforth, M., Seifritz, E., & Spinelli, S. 

(2014). Functional lateralization of the anterior insula during feedback processing. 

Human Brain Mapping, 35(9), 4428–4439. 

Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature 

Reviews Neuroscience, 16(1), 55–61. https://doi.org/10.1038/nrn3857 

Uddin, L. Q., Kinnison, J., Pessoa, L., & Anderson, M. L. (2014). Beyond the Tripartite 

Cognition–Emotion–Interoception Model of the Human Insular Cortex. Journal of 

Cognitive Neuroscience, 26(1), 16–27. https://doi.org/10.1162/jocn_a_00462 

Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of Performance 

Monitoring and Adaptive Behavior. Physiological Reviews, 94(1), 35–79. 

https://doi.org/10.1152/physrev.00041.2012 

Ursu, S., Clark, K. A., Stenger, V. A., & Carter, C. S. (2008). Distinguishing expected negative 

outcomes from preparatory control in the human orbitofrontal cortex. Brain Research, 

1227, 110–119. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 34 

Van Boxtel, A., & Jessurun, M. (1993). Amplitude and bilateral coherency of facial and jaw‐

elevator EMG activity as an index of effort during a two‐choice serial reaction task. 

Psychophysiology, 30(6), 589–604. 

van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive 

control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005–2015. 

Vassena, E., Deraeve, J., & Alexander, W. H. (2020). Surprise, value and control in anterior 

cingulate cortex during speeded decision-making. Nature Human Behaviour, 4(4), 412–

422. 

Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational models of anterior 

cingulate cortex: At the crossroads between prediction and effort. Frontiers in 

Neuroscience, 11, 316. 

Vassena, E., Silvetti, M., Boehler, C. N., Achten, E., Fias, W., & Verguts, T. (2014). Overlapping 

Neural Systems Represent Cognitive Effort and Reward Anticipation. PLOS ONE, 9(3), 

e91008. https://doi.org/10.1371/journal.pone.0091008 

Venkatraman, V., & Huettel, S. A. (2012). Strategic control in decision‐making under 

uncertainty. European Journal of Neuroscience, 35(7), 1075–1082. 

Venkatraman, V., Payne, J. W., Bettman, J. R., Luce, M. F., & Huettel, S. A. (2009). Separate 

neural mechanisms underlie choices and strategic preferences in risky decision making. 

Neuron, 62(4), 593–602. 

Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and 

physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9, 

57. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural currency for rewards and effort 35 

Vogel, T. A., Savelson, Z. M., Otto, A. R., & Roy, M. (2020). Forced choices reveal a trade-off 

between cognitive effort and physical pain. Elife, 9, e59410. 

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, 

Affective, & Behavioral Neuroscience, 15(2), 395–415. 

Westbrook, A., Lamichhane, B., & Braver, T. (2019). The subjective value of cognitive effort is 

encoded by a domain-general valuation network. Journal of Neuroscience, 39(20), 3934–

3947. 

Wiehler, A., Branzoli, F., Adanyeguh, I., Mochel, F., & Pessiglione, M. (2022). A neuro-

metabolic account of why daylong cognitive work alters the control of economic 

decisions. Current Biology, 32(16), 3564–3575. 

Wright, R. A. (2008). Refining the prediction of effort: Brehm’s distinction between potential 

motivation and motivation intensity. Social and Personality Psychology Compass, 2(2), 

682–701. 

Yarkoni, T., Poldrack, R. A., Van Essen, D. C., & Wager, T. D. (2010). Cognitive neuroscience 

2.0: Building a cumulative science of human brain function. Trends in Cognitive 

Sciences, 14(11), 489–496. 

Yee, D. M., Crawford, J. L., Lamichhane, B., & Braver, T. S. (2021). Dorsal Anterior Cingulate 

Cortex Encodes the Integrated Incentive Motivational Value of Cognitive Task 

Performance. Journal of Neuroscience, 41(16), 3707–3720. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.28.513278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.28.513278
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 List of reward and effort studies meeting criteria 

 

First Author Year N  Study Type Reward 

Contrast 

Cognitive Task 

Domain 

Reward 

Effect 

N Foci 

Reward 

N Foci 

Effort 

N foci 

Interaction 

Aarts 2010 20 Execution High vs. Low  Task Switching Y 11 14   

Alexander 2010 24 Execution High vs Low  Response 

Inhibition 

N 0 1 1 

Asci 2019 22 Execution Reward vs 

None 

Response 

Inhibition 

Y 0 6 3 

Bahlmann 2015 20 Execution High vs. Low Task Switching Y 9 13 2 

Belayachi 2015 18 Execution Reward vs 

None 

Working-

Memory 

N 4 9   

Boehler 2014 16 Execution Reward vs 

None 

Response 

Inhibition 

Y 12 29   

Brown 2007 21 Execution High vs. Low Response 

Inhibition 

N 1 0   

Bruening 2018 22 Execution Reward vs 

None 

Working-

Memory 

Y 9 20   

Charron 2010 32 Execution High vs. Low Working-

Memory 

Y 7 2   

Chikara 2018 20 Execution   Response 

Inhibition 

Y   12 16 

Cho  2022 33 Execution Reward vs. 

None 

Working-

Memory 

Y 28 31   

Chong 2017 34 Decision-

making 

  Attention Y     7 
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First Author Year N  Study Type Reward 

Contrast 

Cognitive Task 

Domain 

Reward 

Effect 

N Foci 

Reward 

N Foci 

Effort 

N foci 

Interaction 

Dixon 2012 15 Execution Repetition 

Suppression 

Reward (novel 

> repeated) 

Attention Y 10 10   

Gaillard 2019 23 Execution Reward vs 

None  

Working-

Memory 

Y 16 1 12 

Hernandez 

Lallement 

2014 30 Execution   Arithmetic N   14   

Ivanov 2012 16 Execution High vs. Low Response 

Inhibition 

Y 7 9 6 

Jimura 2010 31 Execution Reward vs 

None 

Working-

Memory 

Y 2     

Kostandyan 2020 25 Execution High vs. Low Response 

Inhibition 

Y 10 6   

Kouneiher 2009 16 Execution   Task Switching     1   

Kouneiher 2009 16 Execution High vs Low Task Switching Y 3 1   

Krebs 2012 14 Execution Reward vs 

None 

Attention Y 23 21 7 

Krebs 2011 18 Execution Reward vs 

None 

Response 

Inhibition 

Y 23     

Lee 2017 18 Execution Reward vs 

None 

Response 

Inhibition 

Y 14     

Leong 2018 40 Execution Reward vs 

None 

Response 

Inhibition 

Y 14 37 12 
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First Author Year N  Study Type Reward 

Contrast 

Cognitive Task 

Domain 

Reward 

Effect 

N Foci 

Reward 

N Foci 

Effort 

N foci 

Interaction 

Locke 2008 16 Execution Reward vs 

None 

Response 

Inhibition 

Y 19     

Longe 2009 10 Execution High vs. Low  Working-

Memory 

Y 6 4   

Luethi 2016 88 Execution Reward vs 

None 

Response 

Inhibition 

Y 54 15   

MagisWeinber

g 

2019 50 Execution Reward vs 

None  

Working-

Memory 

Y 25 14   

Massar 2015 23 Decision-

making 

  Response 

Inhibition 

Y     33 

Mizuno 2008 14 Execution   Working-

Memory 

N   31   

Nigam 2021 21 Execution Reward vs 

None 

Response 

Inhibition 

Y 0 3   

Orr 2019 19 Execution Reward vs 

None 

Task Switching   26 10   

Padmala 2010 34 Execution   Response 

Inhibition 

Y   12 7 

Padmala 2017 57 Execution Reward vs 

None 

Attention Y 6 21 12 

Padmala 2011 50 Execution Reward vs 

None  

Response 

Inhibition 

Y 29 11 19 

Paschke 2015 11

5 

Execution   Response 

Inhibition 

Y   12   
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First Author Year N  Study Type Reward 

Contrast 

Cognitive Task 

Domain 

Reward 

Effect 

N Foci 

Reward 

N Foci 

Effort 

N foci 

Interaction 

Pochon 2002 6 Execution Parametric 

effect of 

Reward 

Working-

Memory 

N 11     

RosellNegre 2017 37 Execution Parametic 

effect of 

reward 

Response 

Inhibition 

Y 1 11   

Soutschek 2015 20 Execution High vs. Low Response 

Inhibition 

Y 3 4 5 

Stoppel 2011 18 Execution High vs. Low Attention Y 4 10   

Taylor 2004 12 Execution High vs. Low Working-

Memory 

N  6 16   

Ursu 2008 

(Exp2) 

17 Execution Reward vs 

None  

Attention Y 19 5   

Ursu 2008 

(Exp1) 

19 Execution Reward vs 

None 

Attention Y 16 4   

Vassena 2014 22 Execution High vs. Low  Arithmetic N 8 11   

Wang 2019 24 Execution High vs. Low Task Switching Y 4     

Westbrooke  2019 21 Decision-

making 

Parametric 

effect of 

reward 

Working-

Memory 

Y 9 15 10 

Wilbertz 2014 49 Execution Reward vs 

None 

Response 

Inhibition 

N 8 45   
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Table 3 Conjunction and difference of the ALE meta-analysis for demands and effort. For each coordinate, region label, hemisphere 

(right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, p values, Z values, cluster size (mm3), and number of studies 

are provided.  

 

Brain Region Hemi 
Cluster 

No. 
x y z 

N Studies (n 

Foci) 

Volume 

(mm3) 
Studies in Cluster 

 
Reward & Control  

Insula R 1 34 22 -4 6 (6) 416 

Cho et al., 2022; Ivanov et al., 

2012; Krebs et al., 2011; 

Boehler et al., 2014;  Magis-

Weinberg et al., 2019; 

Westbrook et al., 2019;  

 

Reward > Control  

ACC R/L 2 8 36 24 5 (5) 748 

Boehler et al., 2014; 

Kostandyan et al., 2020; 

Bahlman et al., 2015; Luethi et 

al. 2016; Magis-Weinberg et al., 

2019 

 

Control > Reward  

Middle frontal 

gyurs 
L 2 

-

48.4 
19.8 28.2 9 (11) 2368 

Bahlman et al., 2015; Mizuno et 

al., 2008; Vassena et al., 2014; 

Kostandyan et al. 2020; 

Kouneiher et al., 2009; Luethi et 

al., 2016; Leong et al., 2018; 

Paschke et al., 2015; Wilbertz et 

al., 2014 

 

Supplementary 

Motor, dACC 
L/R 4 2 12 50 7 (10) 2056 Westbrook et al., 2019; Krebs et 

al., 2012; Ursu et al., 2008; 
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Lallement et al., 2014; Taylor et 

al., 2004; Wilbertz et al., 2014; 

Padmala et al., 2011 

Middle frontal 

gyurs 
L 5 -38 6 51 3 (3) 864 

Belayachi, et al. 2015;Wilbertz 

et al., 2014; Padmala et al. 2010 
 

Inferior Parietal 

Lobule 
L 6 -38 -48 40 4 (4) 848 

Cho et al., 2022; Luethi et al., 

2016; Boehler et al. 2014; 

Lallement et al., 2014; 

 

Inferior Parietal 

Lobule 
R 7 38 -42 40 4 (4) 568 

Cho et al., 2022; Orr et al., 

2019; Ivanov et al., 2012; 

Padmala et al., 2010 

 

Precuneus R 8 14 -70 52 1 (1) 304 Aarts et al., 2010  
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Table 4 The ALE meta-analysis for coordinates representing the interaction between rewards and demands. For each coordinate, 

region label, hemisphere (right, left or bilateral), Brodmann area, MNI coordinates, ALE maxima, cluster size (mm3), and number of 

studies are provided. 

 

Brain Region Hemi Cluster 

No. 

x y z N Studies 

(n Foci) 

Volume 

(mm3) 

Contributing studies 

Supplementary motor 

area, dorsal Anterior 

Cingulate 

L 1 -4 22 44 4 (5) 992 Westbrook et al, 2019; Bahlmann et 

al., 2015; Chong et al., 2017; 

Padmala et al., 2011; 

Middle frontal gyrus L 2 -46 24 26 4 (4) 839 Chong et al., 2017; Leong et al., 

2018; Padmala et al., 2010; Padmala 

et al. 2011 
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