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Abstract  
 
Variability drives the organization and behavior of complex systems, including the human brain. 

Understanding the variability of brain signals is thus necessary to broaden our window into brain 

function and behavior. Few empirical investigations of macroscale brain signal variability have 

yet been undertaken, given the difficulty in separating biological sources of variance from 

artefactual noise. Here, we characterize the temporal variability of the most predominant 

macroscale brain signal, the fMRI BOLD signal, and systematically investigate its statistical, 

topographical and neurobiological properties. We contrast fMRI acquisition protocols, and 

integrate across histology, microstructure, transcriptomics, neurotransmitter receptor and 

metabolic data, fMRI static connectivity, and empirical and simulated magnetoencephalography 

data. We show that BOLD signal variability represents a spatially heterogeneous, central 

property of multi-scale multi-modal brain organization, distinct from noise. Our work establishes 

the biological relevance of BOLD signal variability and provides a lens on brain stochasticity 

across spatial and temporal scales. 
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Introduction  
 
Variability is ubiquitous in our environment. It is a crucial feature of complex ecological and 

biological systems1: from day-to-day climate variability driving climate change and climate 

mitigation efforts2,3, to heart rate variability serving as a clinical tool to predict overall 

cardiovascular health and mortality4. Acting as a catalyst for system adaptability, variability 

determines the organization of complex systems, defines their spatiotemporal properties and 

guides their behavior5. Gaining insights into the variability of a system may thus unlock a deeper 

understanding of the system from which variability emerges.  

The human brain is a complex system that produces variable responses in light of 

environmental uncertainty. Across scientific disciplines variability has become a dominant topic 

of research, yet there continues to be resistance to exploring variability in human cognitive 

neuroscience. Despite human behavior being stochastic6,7,8 and computational models 

operationalizing the brain as a complex dynamical system9–12, corresponding empirical 

neuroimaging research still lags behind. Most functional MRI (fMRI) investigations are centered 

on static methodological approaches to brain function. Given the richness of information 

present in its signal, the fMRI Blood Oxygen Level Dependent (BOLD) signal, disentangling 

intrinsic biological sources of signal variance from extrinsic artefactual sources arising from the 

imaging scanner has historically been a challenge13. fMRI is one of the most widely used and 

clinically tractable tools for the exploration of macroscale brain function. These realities position 

a systematic evaluation of BOLD signal variability as a research imperative, necessary to 

broaden our window into human brain function.   

Thus far, BOLD signal variability has been studied in relation to behavior, cognition, 

development, and clinical status14–20. A robust characterization of its neurobiological features, 

however, is lacking. Without such characterization, it remains unclear whether, or to what 

extent, BOLD signal variability investigations are capturing system noise. To elucidate the 

biological role of BOLD signal variability, a careful examination of its statistical, topographical 

and neuronal properties is necessary. First, BOLD signal variability is a statistical approximation 

of macroscale brain signal dynamics, thus both the estimation method and the properties of the 

fMRI data from which it is estimated, will impact outcomes. Second, human brain function is 

organized along hierarchical modules, ranging from local functional units to global functional 

networks21,22, with heterogeneous topographies. Therefore, BOLD signal variability must be 

understood within a local-global framework23,24. The temporal variability of individual regions 
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(local BOLD signal variability) must be evaluated alongside the temporal variability of multi-

regional, interacting functional networks (dynamic functional connectivity, or global BOLD signal 

variability). If biologically relevant, local and global BOLD signal variability should present 

spatially heterogeneous topographies that recapitulate known neurobiological processes that 

unfold across spatial scales. Third, BOLD signal variability, if not artefactual noise, should 

reflect aspects of macroscale neuronal signals that occur at finer temporal scales and are 

captured by neuroscientific modalities with greater temporal resolution than fMRI, such as 

electrophysiology. 

In this study, we robustly defined measures of local and global BOLD signal variability, 

as the regional moment-to-moment change in BOLD signal intensity between successive 

timepoints and as the similarity in inter-regional functional connectivity over time. To determine 

robust results dissociable from noise, we leveraged multiple state-of-the-art openly available 

fMRI datasets and assessed the validity and reliability of local and global BOLD variability 

across samples. To understand the spatial organization and biological properties of local and 

global BOLD variability, we examined their topography within each fMRI dataset and 

interrogated associations with open-source data, including ex_vivo histology25 and in_vivo 

microstructure26, transcriptomics27,28, PET-derived neurotransmitter receptor and metabolic 

information29, and fMRI static connectivity data30,31. Finally, we leveraged 

magnetoencephalography (MEG) data and naturalistic electrophysiological simulations to 

mechanistically understand the temporal and neuronal properties of local multimodal signal 

variability. We found that measures of BOLD signal variability exhibited spatially heterogeneous 

topographies, were embedded within multi-scale brain organization, and were rooted in 

electrophysiological processes. Together, our work establishes local and global BOLD signal 

variability as biologically relevant, central features of multi-scale, multi-modal brain 

organization, distinct from noise. Our study represents a step forward towards understanding 

brain stochasticity across spatial and temporal scales. 

 
Results 
 
Quantification of local and global BOLD signal variability  
 
We first sought to identify robust regional metrics of local and global BOLD signal variability. 

For all analyses, brain regions were defined using the Schaefer 200 regions-17 networks 

parcellation solution32.  
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Local BOLD signal variability was calculated by taking the root Mean Squared 

Successive Difference (rMSSD) of each normalized regional timeseries. rMSSD quantifies 

moment-to-moment changes in the BOLD signal by measuring the mean of the squared 

differences in signal intensity between successive timepoints33. Greater local BOLD variability 

therefore is present in regions with greater rMSSD (Figure 1A).  

Global BOLD signal variability was estimated as dynamic functional connectivity using 

covSTATIS. As an extension of Principal Component Analysis, covSTATIS is a 

multidimensional scaling method that uses eigenvalue decomposition and Euclidean distance 

to evaluate the similarity of multiple data tables derived from the same set of observations34,35. 

In our case, we applied covSTATIS to examine, for each individual, how similar the connectivity 

of a brain region was with the rest of the brain, over time. Unlike most conventional dynamic 

connectivity methods36, covSTATIS defines measures of global dynamics at the regional level, 

thus side-stepping user-dependent clustering approaches that have traditionally led to 

fractionated, study-specific definitions of dynamic functional connectivity37. 

After partitioning each regional timeseries into equally sized windows via a sliding 

window approach38,39 (see Methods for details), we derived, for each window, functional 

connectivity measures for each region pair, as their product-to-moment correlation across 

timepoints (Figure 1B step 1). This procedure resulted in NxNxT functional connectivity data 

tables for each individual, where N is the number of regions and T the number of windows. We 

next assessed, via the Rv similarity coefficient40, the similarity across all data tables across all 

individuals (Figure 1B step 2). We then calculated their weighted average (a NxN data table), 

to obtain a group compromise space, where regional connections more similar across time and 

individuals were given a higher weight, since they were most represented in the sample (Figure 
1B step 3). We submitted the group compromise space to eigenvalue decomposition (Figure 
1B step 4) and obtained a multivariate connectivity space, wherein regions that showed similar 

connectivity values over time were closer together than regions with less similar connectivity 

values across windows (Figure 1B step 5). covSTATIS next allowed us to back-project into 

this abstract multivariate Cartesian space, for every individual, each region’s mean connectivity 

value over time across all windows (Figure 1B step 6, blue dot) and around it, the region’s 

connectivity value for each window (Figure 1B step 6, green dots). Our last step involved 

calculating, for each individual, the area of the hull around each regional mean connectivity 

over time (Figure 1B step 7). A greater area of the hull indicates greater distance/spread in 
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connectivity across windows, and is therefore characteristic of regions with greater dynamic 

functional connectivity, that is greater global BOLD signal variability. 

 We next validated our method by assessing its test-retest reliability and its ability to 

capture effects typically reported in studies using traditional dynamic connectivity methods. 

Test-retest reliability was evaluated by relating global BOLD variability measures obtained via 

covSTATIS across two successive runs of resting-state fMRI data collected on 145 healthy 

young adults (see Methods for details). covSTATIS showed high test-retest reliability (r=0.98; 

p<.001; Figure 1C). We next leveraged two cross-sectional healthy lifespan resting-state fMRI 

datasets (see Methods for details) to test whether covSTATIS-derived global BOLD variability 

also decreased as a function of age, that is whether older age was consistently associated with 

smaller covSTATIS-derived areas of the hull. Age has been shown to dampen the brain’s 

dynamic range41. Using Partial Least Squares42,43, a multivariate method that assesses the 

covariance between two or more sets of variables, we found that, for both samples, age was 

negatively associated with area of the hull particularly in regions that preferentially show age 

effects in the literature44 (Figure 1C; one significant latent variable at p=0.003 explaining 72% 

brain-age variance; Lifespan Sample 1 brain-age r=-0.19, Lifespan Sample 2 brain-age r=-

0.30). Together, these results highlight how covSTATIS is a valid and robust method to estimate 

global BOLD signal variability. 
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Figure 1. Local and global BOLD signal variability | (A) Local BOLD variability was quantified via the 
root Mean Squared Successive Difference (rMSSD) on each normalized regional timeseries. | (B) 
Global BOLD variability was quantified as dynamic functional connectivity obtained on windowed 
regional timeseries via covSTATIS. | (C) On the left, we tested covSTATIS test-retest reliability on a 
sample of 145 healthy young adults who underwent two successive 10-min runs of multi-echo resting-
state fMRI. On the right, we used Partial Least Squares to test whether covSTATIS-derived global 
variability was reduced as a function of age, in two healthy adult lifespan samples. Decreased global 
BOLD variability is reported in the aging literature using traditional methods. Note: all analyses and 
visualizations in this paper reduce the number of functional networks from 17 to 7, despite data being 
parcellated with the Schaefer 200-17 solution. To maintain spatial granularity while easing interpretation, 
we merged together regions from different subnetworks into their principal network (e.g., Visual Central 
and Visual Peripheral into Visual). 

Bridging across fMRI datasets: reliability and topography of local and 
global BOLD signal variability  
 
We estimated local and global BOLD signal variability on two openly available resting-state 

fMRI datasets with diverse acquisition protocols. Given the heterogeneity of fMRI data used in 

the literature, it is imperative to quantify the dependency of local and global BOLD variability on 

the type of fMRI data used to extract them, to ensure generalizability. Here, we chose two 

datasets that differ in echo time and band acquisition. The number of echo times and bands 

influences the spatial and temporal resolution of fMRI, which in turn may impact the 

spatiotemporal properties of the underlying BOLD signal. Multi-echo acquisition allows for 

greater spatial coverage yet comes at the cost of slower acquisition time; multi-band acquisition 

allows instead for faster acquisition but is more susceptible to motion and scanner artefacts45–

48. Throughout this paper, analyses were conducted on both samples in parallel. “Young sample 

1” refers to our multi-echo single-band fMRI dataset49 and “Young sample 2” refers to our 

single-echo multi-band fMRI dataset50 (see Figure 2A and Methods for details about the 

samples).  

Despite differences in the distribution of regional variability values across fMRI data type 

(Figure 2A; rMSSD: Young Sample 1 mean(SD)=23.73(9.85), IQR=12.75; Young Sample 2 

mean(SD)=13.93(4.18), IQR=5.16; covSTATIS: Young Sample 1 mean(SD)=0.01(0.002), 

IQR=0.002; Young Sample 2 mean(SD)=0.02(0.003), IQR=0.004; arbitrary units), local and 

global BOLD variability overall converged across samples (Figure 2B, top). Greater regional 

and network reliability was found for global than local BOLD variability, as indicated by the 

greater number of regions and networks showing consistent mean values across fMRI samples 

(Figure 2B, middle and bottom). For both local and global BOLD variability, reliability was 

lowest in sensori-motor areas and highest in heteromodal, particularly default network, regions. 
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Figure 2. Distribution of local and global BOLD signal variability and their reliability across two 
different fMRI data types. | (A) On the left: description of the two fMRI samples used in this study. On 
the right: regional distribution of group-level local and global BOLD variability (arbitrary units). | (B) Top: 
Inter-sample reliability of local (left) and global (right) BOLD variability across brain regions, estimated 
on group-level measures. Middle: Regional reliability of local (left) and global (right) BOLD variability 
across samples. Independent t-tests were computed for each brain region (200 tests per metric) to 
assess mean regional differences in local (left) and global BOLD variability (right) across fMRI data 
types. Colored regions show reliable effects (p>.05). Bottom: Network reliability of local (left) and global 
(right) BOLD variability across samples. Networks crossing 0 show reliable effects (p>.05).  

Building on these findings, we next described the spatial topography of local and global 

BOLD variability by fMRI data type. Understanding the spatiotemporal complexity of BOLD 

signal variability is necessary to build accurate computational and empirical models of brain 

function. Computational models typically treat macroscale signal variability as spatially 

homogenous, to maximize mathematical tractability. Empirical fMRI studies mostly focus on the 

behavioral and clinical applicability of these measures. Furthermore, the known heterogeneity 

in spatial coverage across fMRI acquisition protocols is oftentimes overlooked.  

For both fMRI data types, local and global BOLD variability showed a heterogeneous 

topography across brain regions (Figures 3A-B). Local BOLD variability presented greater 

topographical divergence across regions and networks than global BOLD variability, and its 

topography varied the most by fMRI data type (Figure S1). Regional rank orders of local and 

global BOLD signal variability highlight the greater correspondence in higher-order cortices 

across fMRI data types (Figure S2).  

To contextualize these observed topographies, we mapped group-level regional profiles 

of local and global BOLD variability onto regional multi-scale maps of neocortical brain 

organization. Such maps were derived from open-source ex_vivo cytoarchitectural25, in_vivo 

microstructural26, ex_vivo transcriptional (molecular)27,28 and static functional connectivity MRI 

data30. Both local and global BOLD variability were found to be organized along multiscale 

gradients: both measures significantly mapped onto more than one neurobiological system 

(Figure 3C). This multiscale mapping was consistent across fMRI data type. Local BOLD 

variability was situated along an anterior-posterior gradient that was maximally associated with 

laminar and cellular spatial organization (r=0.52, p10k spin<0.001 and r=0.62, p10k spin<0.001). 

Global BOLD variability instead evolved along a unimodal-transmodal gradient that 

preferentially related to underlying regional microstructure and static functional connectivity (r=-

.32, p10k spin=0.03 and r=.47,p10k spin<0.001). Remarkably, these two distinct axes of local and 

global BOLD variability provide direct application of previous work showing how intrinsic fMRI 
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dynamics, estimated as the optimum combination of more than 6000 temporal BOLD timeseries 

features, collectively evolve along these two axes of neocortical brain organization51.  
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Figure 3. Topographical characterization of local and global BOLD signal variability per fMRI 
data type. | (A) Regional topography of local BOLD variability. Group-level spatial maps were obtained 
averaging BOLD variability maps across individuals within each fMRI sample. Central, grey-scale maps 
are the group averages. To ease interpretation, we show around the central maps, the 7 canonical 
network-level group maps. To appreciate between-network differences in BOLD variability, we let 
scaling values differ between networks. Note that rMSSD values were z-scored, for easier comparison 
across datasets as units are arbitrary. | (B) Regional topography of global BOLD variability. Similarly to 
local BOLD variability, we show group-level spatial maps of dynamic functional connectivity both for the 
whole brain and the canonical 7 networks (z-scored values). | (C) Multiscale gradients of local and global 
BOLD variability. We correlated our group local global BOLD variability maps with open-source ex_vivo 
cytoarchitectural, in_vivo microstructural, transcriptional and static functional connectivity maps, for 
each fMRI sample separately. Significance was assessed via permuting 10,000 times the regional labels 
of our local and global variability spatial maps (Hungarian spins). The table shows resulting correlation 
values split by metric and sample. Colored boxes indicate significant correlations (p10k spin<0.05).  

Bridging across spatial scales: local and global BOLD signal variability sit 
at the intersection of multiscale neocortical organization 
 
We next sought to comprehensively interrogate the multiscale properties of local and global 

BOLD signal variability. If variability is an emergent, crucial feature of complex systems, 

empirical fMRI measures of brain variability should recapitulate core aspects of multiscale brain 

organization. Building on this inference, we hypothesized that local and global BOLD variability 

would sit at the intersection of multiscale neocortical organization (Figure 4A top left). To test 

this hypothesis, we investigated whole-brain relationships between our measures of local and 

global BOLD variability and open-source micro-, meso-, and macro-scale neurobiological 

variables, for each fMRI data type separately. Microscale neurobiological metrics included the 

first gradient of regional cytoarchitectural differentiation from ex_vivo BigBrain histological 

data25, and the first gradient of microstructural differentiation from in_vivo quantitative T1 

imaging from the MICA-MICs dataset26. Mesoscale neurobiological metrics were calculated as 

composite scores on PET-derived whole-brain neuroreceptor density maps available through 

Neuromaps29. We derived composite scores, as opposed to individual neuroreceptor maps, 

given the heterogeneity of the molecular and chemical composition of each brain region52. 

Macroscale neurobiological metrics comprised: PET-derived whole-brain maps of oxygen 

metabolism, glucose metabolism, cerebral blood flow and cerebral blood volume; and large-

scale gradients of brain organization including fMRI-derived sensory-association axis, the 

principal gradient of fMRI static functional connectivity and MEG-derived intrinsic timescale, all 

downloaded from Neuromaps29. Based on recent work on the role of BOLD temporal 

autocorrelation properties in recapitulating macroscale brain organization53, for each of our 

fMRI samples, we additionally extracted group-level spatial maps of regional temporal 
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autocorrelation scores from the BOLD signal. Such scores were derived as the product-to-

moment correlation between successive (lag-1) and alternate (lag-2) timepoints of each 

regional timeseries tailored to each sample’s TR. Lastly, to expand on recent evidence on the 

link between arrhythmic oscillatory brain activity and brain stochasticity54, we leveraged open-

source MEG data55,56 and parametrized neurophysiological spectra57, to spatially characterize 

whole-brain cortical arrhythmic brain activity and obtain a group-level spatial map. Each one of 

these group-level multiscale maps was separately correlated with group-level local and global 

BOLD variability maps from each of our fMRI samples, across regions. Statistical significance 

was assessed via 10,000 Hungarian spins on the regional parcellation of our local and global 

BOLD variability maps.  

Overall, across fMRI data types, local and global BOLD variability were both associated 

with several neurobiological measures belonging to each spatial scale (Figure 4A middle and 
right). At the microscale, greater local BOLD variability was associated with greater laminar 

differentiation (r=0.52, p10k spin=0.007 Young Sample 1). Specifically, greater rMSSD was 

present in regions showing heightened differentiation in cell size and density and clearer cortical 

layer separation. Motivated by previous work on the cytoarchitectural properties of static BOLD 

signal measures58, we next derived cortical thickness for supragranular (mean across layers I-

III), granular (layer IV) and infragranular layers (mean across layers V-VI) from BigBrain data25, 

and related their whole-brain spatial distribution to our local BOLD variability spatial maps. We 

predicted local BOLD variability to be associated with the expression of granular layer IV in 

particular. Layer IV receives feedforward thalamo-cortical inputs59,60. If regions with a prominent 

layer IV need to orchestrate incoming feedforward projections, then such regions may exhibit 

greater variability in their functional activity. Theories about the thamalo-cortical pathway have 

proposed high local BOLD variability along these connections61. Additionally, layer IV is thickest 

in visual areas and absent in motor regions, precisely where we observed the highest and 

lowest levels of local BOLD variability. In line with our predictions, we found that greater local 

BOLD variability was significantly associated with stronger layer IV expression (r=0.39, p10k 

spin=0.01 Young Sample 1; Figure S3). At the mesoscale, greater local BOLD variability was 

related to greater ionotropic receptor density (r=0.39, p10k spin=0.002 Young Sample 1), reduced 

metabotropic receptor density (r=-0.23, p10k spin=0.008 Young Sample 2), decreased receptor 

diversity (r=-0.25, p10k spin=0.002 Young Sample 1), and decreased excitation/inhibition (E/I) 

ratio (r=-0.47, p10k spin<0.001 Young Sample 1; r=-0.31, p=0.04 Young Sample 2). At the 

macroscale, heightened local BOLD variability was associated with increased oxygen (r=0.41, 
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p10k spin=0.01 Young Sample 1; r=0.54, p10k spin<0.001 Young Sample 2) and glucose 

metabolism (r=0.62, p10k spin<0.001 Young Sample 2), along with greater cerebral blood flow 

(r=0.50, p10k spin<0.001 Young Sample 2) and volume (r=0.41, p10k spin=0.009 Young Sample 1).  

At the microscale, greater global BOLD variability covaried with thinner infragranular 

layers (r=-0.45, p10k spin=0.004 Young Sample 1; Figure S3). Greater global BOLD variability 

was also related to overall decreased microstructural differentiation (r=-0.32, p10k spin=0.03 

Young Sample 2). At the mesoscale, greater global BOLD variability was associated with 

increased metabotropic receptor density (r=0.33, p10k spin<0.001 Young Sample 1; r=0.26, p10k 

spin=0.003 Young Sample 2). At the macroscale, it was positively related to functional static 

connectivity organization (r=0.47, p10k spin<0.001 Young Sample 2) and the sensory-association 

axis (r=0.35, p10k spin=0.01 Young Sample 2). 

To quantify the robustness of these multiscale correlations across fMRI data type, we 

next quantified the degree of overlap in the neurobiological correlates of local and global BOLD 

variability across our two fMRI samples. We computed rank correlations on the Fisher-z 

transformed correlation vectors characterizing the relationships between local and global BOLD 

variability, and multiscale variables, for each fMRI sample. Both local and global BOLD 

variability exhibited strong overlap in their associations with multiscale neurobiological factors 

across fMRI data types (Figure 4A bottom).  

To quantify the central role of local and global BOLD variability in multiscale brain 

organization, we next ran cartographic analyses on our two sample-specific correlation 

matrices. Cartographic analyses are commonly used to derive graph theory metrics from brain 

networks21. We first assigned local and global BOLD variability, micro-, meso- and macro-scale 

measures to four different communities. We then took the absolute value of the reported 

correlations and calculated, for each fMRI sample, the participation coefficient of local and 

global BOLD variability62,63. Participation coefficient scores allowed us to determine how evenly 

distributed across spatial scales were the correlations of local and global BOLD variability, for 

each fMRI data type. Scores closer to 1 indicate greater multiscale participation64. We found 

high participation scores for both metrics and fMRI samples (Young Sample 1: local = 0.65, 

global = 0.71; Young Sample 2: local = 0.49, global = 0.59). 

As a final step, to further validate the multiscale nature of local and global BOLD 

variability, we used dominance analysis (see Methods for details) to build a predictive model 

for each fMRI dataset, where we estimated the unique contribution of each neurobiological 

measure in predicting local and global BOLD variability14,65. In line with our correlational results, 
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we found that both local and global variability were predicted by a combination of 

neurobiological variables within each sample (Figure 4B). 
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Figure 4. Multiscale neurobiological correlates of local and global BOLD signal variability. | (A) 
Top left: Euler diagram representing our hypothesis of the central role of local and global BOLD 
variability in multiscale brain organization. Each circle represents a spatial scale and includes all 
variables used in our analyses. Middle left: Correlation matrices for each fMRI sample (upper triangle: 
Young Sample 1; lower triangle: Young Sample 2). Asterisks indicate correlations that survived 
significance testing (10,000 Hungarian spins of Schaefer’s regional labels). Right: Spring embedding 
plots represent correlations with an absolute value above 0.3, for each fMRI sample. Note that link length 
reflects correlation magnitude. Bottom: Rank order correlations between the multiscale correlates of 
local and global BOLD variability across fMRI samples. Multiscale correlates were first Fisher-z 
transformed before being related across fMRI samples. | (B) Dominance analysis results per metric and 
fMRI sample. Results indicate the unique contribution of each neurobiological variable in predicting local 
and global BOLD variability, and recapitulate our correlational results. 
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Bridging across temporal scales: local BOLD signal variability is anchored 
in electrophysiological processes 
 
To further understand the temporal and neuronal properties of BOLD signal variability, we 

turned to electrophysiological data and used a combination of open-source MEG source-

modelled, broadband (1-150Hz) resting-state data55,56 and simulations of naturalistic 

electrophysiological timeseries, to derive and characterize local measures of brain variability. 

We decided to compute only measures of local variability and not of global variability, in light of 

known methodological variance of functional connectivity derivatives in the MEG literature66.  

We derived two measures of local brain signal variability on MEG regional timeseries, 

based on how variability is independently characterized in fMRI and MEG: (1) moment-to-

moment signal intensity changes via rMSSD (MEG signal variability), and (2) 1/f exponent, that 

is the slope of the MEG power spectrum, shown to capture background arrhythmic activity67,68. 

We first looked at the spatial topography of both measures. For the former, we observed highest 

variability levels in somato-motor areas, lowest values in visual and dorsal attention regions, 

and mid-levels in higher-order cortices (Figure 5A; network maps in Figure S1). For the latter, 

we replicated previous reports showing steeper slopes (i.e., greater 1/f exponent values) in 

posterior cortical regions67 (Figure 5B, left).   
Next, for each individual, we obtained whole-brain measures of local MEG variability for 

both rMSSD and 1/f exponent measures by averaging across brain regions. We then related 

the two variables across individuals and found a strong negative association between them (r=-

0.6; p<.001, Figure 5B middle): individuals with a flatter 1/f exponent showed heightened 

levels of local rMSSD-derived MEG variability. To expand on these findings, we built a 

hierarchical linear model where we tested for rMSSD-1/f exponent relationships while 

accounting for regional heterogeneities in both measures (Figure S4). The model showed 

regional diversity in the association between rMSSD and the 1/f exponent (Figure S4). To 

further get a mechanistic understanding of this relationship, we simulated naturalistic 

electrophysiological timeseries using the NeuroDSP toolbox69 (see Methods for details). We 

manipulated the steepness of the 1/f exponent at various parameters ranging from -0.7 to -1.5 

in steps of -0.1. 10 simulations were run per step and local rMSSD-derived MEG variability was 

calculated for each manipulation. We found that flatter 1/f exponents were strongly predictive 

of greater local MEG variability (R2=0.97; b(SE)=-9.86(0.02); CI [-9.51;-9.10]; p<0.001; Figure 
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5B right panel). These results highlight the arrhythmic nature of electrophysiological signal 

variability.  

As a final step, we tested cross-modal relationships between local fMRI and MEG signal 

variability, and found a consistent, negative association across samples (Figure 5C). While the 

directionality of effects can be explained by the opposing topographies across modalities, these 

results reinforce the biological multimodal arrhythmic nature of local brain signal variability. 
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Figure 5. Contextualizing local brain variability across neuroimaging modalities. | Local 
electrophysiological variability was estimated as MEG signal variability via rMSSD, and as the 1/f 
exponent in the MEG power spectrum. (A) Functional topography of local rMSSD-derived MEG 
variability. Central, grey-scale map represents the group average map. Around it are the 7 canonical 
network-level group maps. Note that rMSSD values were z-scored, as units are arbitrary. | (B) Left: 
Functional topography of the 1/f exponent per network, across individuals. Middle: whole-brain 
relationship between local rMSSD-derived MEG variability and 1/f exponent across individuals. Right: 
We simulated naturalistic electrophysiological timeseries and varied the steepness of their 1/f exponent 
at various parameters from -1.5 to -0.7, shown as positive values in the graph, in steps of -0.1. 10 
simulations were run per parameter. We calculated local rMSSD-derived MEG variability on each 
simulated timeseries, and related exponent values with rMSSD scores. | (C) Cross-modal relationships 
between local fMRI and MEG brain variability, per fMRI sample. 

 
Discussion 
 
Variability is a fundamental functional property of complex systems, as it determines system 

organization and behavior. The human brain is a complex stochastic system, hence integrating 

functional variability of brain signals is essential for the modeling of human brain function. In 

this study, we investigated the spontaneous local and global variability of the fMRI BOLD signal. 

We comprehensively characterized the statistical properties, multiscale topographies and 

neurobiological components of local and global BOLD signal variability, respecting the 

complexity of the fMRI BOLD signal. By bridging across fMRI data types, and spatial and 

temporal scales, we showed that macroscale measures of local and global BOLD signal 

variability are integral aspects of brain function. Local and global BOLD signal variability are not 

merely sources of biologically irrelevant noise. Measures of BOLD signal variability are reduced 

with age, have a spatially heterogeneous topography, encapsulate micro-, meso- and macro-

scale neurobiological phenomena, and are related to underlying electrophysiological neuronal 

activity. Our findings motivate cognitive network neuroscience research to re-evaluate local and 

global BOLD variability as structured, multifactorial, heterogeneous properties of human brain 

organization, and offer a comprehensive lens on brain stochasticity across spatial and temporal 

scales. 

Local and global BOLD variability are statistical approximations of biological processes 

unfolding over time. It is thus important to consider how their statistical behavior may explain 

the effects we observe empirically. Local BOLD variability is computed at the level of single 

regional BOLD timeseries, whereas global BOLD variability involves the interpolation of pairs 

of local BOLD timeseries. Consequently, local BOLD variability is closer to the data from which 

it is derived than global BOLD variability, explaining its greater dependency on fMRI data type. 
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Levels of statistical approximation are intuitively linked to levels of brain organization: lower 

levels of statistical approximation allow for more specific local neural representations, higher 

levels of statistical approximation reflect lower-dimensional global neural representations. This 

statistical explanation elucidates why, in this study, lower-order regions exhibited lower 

reliability of variability measures, than higher-order areas across fMRI samples. Across primate 

species, lower-level areas have spatially smaller receptive fields and resonate at faster 

timescales70,71. These two features allow sensory-motor cortices to tune to quickly changing 

sensory-motor stimuli. Specificity and speed of sensory perception and motor action require 

minimal number of computational steps, resulting in variable outputs prone to local changes. In 

contrast, association regions have spatially larger receptive fields and oscillate at longer 

timescales70,71. These two features allow association cortex to respond and integrate 

information across regions, and thus drive feedback processes in the brain72. Information 

integration across space and time, is a higher-order computational process, which relies on 

multiple upstream units, resulting in stable outputs robust against local changes.  

Here, we showed how the statistical dependencies of local and global BOLD variability 

meaningfully interact with the statistical principles that govern the brain’s spatial organization. 

By examining their topographies, we found local and global BOLD variability to be spatially 

heterogeneous processes that closely map onto local and global information processes in the 

brain. Local variability unfolded along an anterior-posterior gradient, whereas global variability 

followed a unimodal-heteromodal gradient73. These findings shape the design of future 

empirical studies and computational models on local brain variability. Local brain variability has 

so far been treated as a nuisance, extrinsically-driven, artefactual process and simplified as a 

spatially homogenous error term in models of brain function. Accumulating evidence has 

however shown how local BOLD variability defines global network structure over space14,24,74 

and time75. Our study adds to this body of evidence by revealing that local BOLD variability is 

a structured, spatially heterogeneous process. Computational approaches to brain dynamics 

may thus benefit from introducing spatial heterogeneity in local measures of variability, to more 

precisely approximate empirical observations. In doing so, empirical fMRI data will not only 

serve as a model validation tool but also as a model optimization tool.    

Local and global BOLD variability are macroscopic representations of stochastic 

processes unfolding at finer spatial and temporal scales. A multi-scale contextualization of 

these measures fundamentally elevates the validity and applicability of fMRI imaging, and 

significantly advances our understanding of BOLD signal variability. This study does so by 
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identifying the neurobiological underpinnings of local and global fMRI BOLD signal variability 

across spatial and temporal scales. We showed that local BOLD variability emerges from a 

mixture of local cellular, molecular, neurochemical and neurovascular factors. Expanding on 

existing evidence76, local BOLD variability is thus not entirely driven by BOLD physiological 

processes, but is instead the macroscopic representation of low-level micro- and meso-scale 

feedforward operations in the brain. We found associations between greater levels of local 

BOLD variability and greater cytoarchitectural differentiation, thicker layer IV expression, 

greater neuronal density, and higher neurogenesis. We observed greater local BOLD variability 

in granular cortical regions. Granular regions are involved in feedforward processing, and are 

directly innervated by the core cells of the thalamus72. The distinct laminar structure of granular 

regions enables segregation and efficient processing of incoming sensory information77, 

facilitated by heightened neuronal density and neurogenesis. Increased cellular diversity and 

higher number of processing units signify a greater range of inputs in granular regions. 

Increased local BOLD variability in granular areas reflects greater temporal diversity of their 

functional responses, and therefore a greater range of outputs. Put together, these results 

indicate that a greater range of outputs may arise from a greater range of inputs. The elevated 

dynamic range of responses observed in these sensory regions may facilitate the detection of 

diverse environmental stimuli, a physical process called stochastic facilitation78,79. Sensory 

regions are known to maintain high stimulus fidelity by keeping incoming information separated 

and coupled to its environmental sources80,81. The high moment-to-moment stochastic 

properties of sensory cortices may enable them to effectively parallel in their processing, and 

be sensitive to, environmental uncertainty. 

Greater local BOLD variability was also related to greater ionotropic - primarily inhibitory 

- receptor density. Ionotropic receptors are fast-enacting receptors whose effects induce 

immediate local changes82. Local BOLD variability is maximal in fast-oscillating sensory 

cortices. The mesoscopic features of ionotropic transmission may consequently give rise to, 

and shape, the topography and timescale of macroscale local variability observed in fMRI. 

Additionally, the inhibitory signature of local BOLD variability complements existing literature 

on the direct involvement of GABAergic and dopaminergic (D2 inhibitory) receptors and 

thalamo-cortical GABAergic projections, in orchestrating local brain variability20,83,84. It is 

important to consider that measures of macroscale neurotransmitter receptor density do not 

however provide information about the ultimate mesoscopic effects that receptors have on 

neurotransmission. If, for instance, an excitatory receptor is located on an interneuron, when 
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stimulated, this receptor will have an inhibitory effect on its target. Pharmacological 

interventions coupled with multi-scale imaging techniques are therefore necessary to more 

precisely characterize the valence of mesoscale aspects of local brain variability.  

Global BOLD variability emerged as the macroscopic representation of high-level micro- 

and mesoscale feedback operations in the brain. Global BOLD variability was maximal in 

higher-order cortices and, as a result, it was associated with increased microstructural 

similarity, greater metabotropic receptor density and higher values on the unimodal-

heteromodal static functional connectivity gradient. These multiscale properties of global BOLD 

variability mirror the multiscale features of heteromodal regions: greater similarity in myelin 

content along with slower and long-lasting neurotransmission may facilitate information 

integration across the brain. Association cortices receive diffuse projections from the matrix 

cells of the thalamus and via long-range connections are involved in feedback modulatory 

processes in the brain72. To be able to coherently update incoming information from lower-level 

cortices, feedback processes require flexible inter-regional connections, ultimately explaining 

why global BOLD variability was highest in association areas. Despite the impact of fMRI 

acquisition sequences on local and global BOLD variability, the centrality of these measures in 

multiscale brain organization was reliable across fMRI datasets, further establishing their 

biological relevance.  

We concluded our study by bridging across temporal scales and neuroimaging 

modalities. Given fMRI’s indirect estimation of neuronal activity, we used temporally-rich 

electrophysiological signals to interrogate the neuronal nature of local BOLD variability. Across 

modalities, we found local signal variability to be driven by the slope of the signal power 

spectrum. Our findings add to an emerging body of work highlighting how the previously 

disregarded slope of the electrophysiological power spectrum is instead biologically and 

behaviorally relevant67,85–87. Greater signal variance was observed in flatter power spectra, that 

is spectra wherein all frequencies, even the highest, were represented. Since flat power spectra 

are characteristic of white noise, these results additionally point towards the potential biological 

role of higher frequencies and white noise in shaping local brain signal variability. While 

relationships between BOLD and electrophysiological signals are complex and require further 

investigations, these findings urge the general neuroscience community to re-consider what is 

empirically deemed “noise” (i.e., slope of the electrophysiological power spectrum, local BOLD 

signal variability) as biologically meaningful properties of multimodal brain signals. 
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Altogether, via an integrative multi-data, multi-scale, multi-modal approach, our work 

distills the rich spatiotemporal information present in the fMRI BOLD signal and conveys the 

empirical biological properties of local and global BOLD signal variability. By relating BOLD 

signal variability to neurobiological and neurophysiological processes, we ascertained the 

accessibility of the BOLD signal to brain stochasticity at various spatial and temporal scales. 

This study establishes BOLD signal variability as a spatially heterogeneous, multifactorial, 

multimodal property of brain organization integral to healthy brain function. 
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Methods  
Neuroimaging datasets 
All main analyses were carried out on two open-source resting-state functional MRI datasets: 

Young Sample 1 & 2. To validate covSTATIS as a global BOLD signal variability estimation 

method, we leveraged two adult lifespan datasets: Lifespan Sample 1 & 2. To evaluate the 

temporal and neuronal properties of BOLD variability and to bridge across neuroimaging 

modalities, we used an open-source resting-state MEG dataset. Below, we briefly describe 

each neuroimaging dataset. 

 

fMRI Young Sample 1  
A total of 150 healthy young individuals ages 18-34 (Mage = 22y, SDage = 3y, 55% F) from the 

Neurocognitive Aging Dataset49 were included in this study. Details about inclusion criteria can 

be found in our previous paper44. Participants underwent two multi-echo resting-state fMRI 

scans of 10-min duration each within the same session. Analyses conducted in this paper were 

performed on the first run of data. The second run was used to assess test-retest reliability of 

global BOLD signal variability on 145 individuals, since 5 participants out of the total sample 

did not have a second run of data (Mage = 22y, SDage = 3y, 55% F). Data were collected at the 

Cornell Magnetic Resonance Imaging Facility, at Cornell University (New York, US). All 

participants provided written informed consent. Research protocols were approved by the 

Cornell University Institutional Review Board.  

Resting-state fMRI data were acquired on a 3T GE Discovery MR750 using a multi-echo 

EPI sequence with online reconstruction (TR=3000 ms; TE1=13.7 ms, TE2=30 ms, TE3=47 ms; 

83° flip angle; matrix size=72 × 72; FOV=210 mm; 46 axial slices; 3mm isotropic voxels; 204 

volumes) with 2.5× acceleration and sensitivity encoding. Participants were instructed to keep 

their eyes open during the two scans. Multi-echo resting-state fMRI data were preprocessed 

and denoised using Multi-Echo Independent Component Analysis (ME-ICA)45,46, as in our 

previous publication44. Functional images were parcellated using the Group Prior Individual 

Parcellation (GPIP)44,88, a participant-specific parcellation approach initialized on the Schaefer 

200-17 network solution32. Unlike standard parcellations, GPIP accounts for within-subject 

variation in parcel boundaries. Regional high kappa timeseries from ME-ICA were used to 

derive measures of local and global BOLD signal variability.  
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fMRI Young Sample 2 
A total of 112 healthy young individuals age matched to Young Sample 1, ages 18-34 (Mage = 

23y, SDage = 3y, 54% F), from the Enhanced Nathan Kline Institute Rockland Sample50 were 

included in this study. Details about inclusion criteria can be found in our previous paper89. All 

participants provided written informed consent. Research protocols were approved by the NKI 

institutional review board. 

We included one run of resting-state fMRI data acquired on a 3T Siemens Trio scanner 

using a multiband (factor of 4) EPI sequence (TR=1400 ms; TE=30 ms; 65° flip angle; 

FOV=224mm; 64 axial slices; 2mm isotropic voxels; 404 volumes). Participants were instructed 

to keep their eyes open during the scan. Details about the protocol can be found elsewhere50. 

Functional images were preprocessed in the same fashion as our previous publication89, 

including ICA denoising, and parcellated using the standard Schaefer 200-17 network 

solution32. Regional timeseries were used to calculate local and global BOLD signal variability. 

 

fMRI Adult Lifespan Sample 1 
A total of 154 healthy adults ages 20-86 (Mage = 49y, SDage = 19y, 62% F) from the Greater 

Toronto Area were included in this study. Details about the sample can be found in our previous 

publication15,16. All participants provided written informed consent. Research protocols were 

approved by the Research Ethics Board at Baycrest Health Sciences Center.  

Resting-state fMRI data were collected on a 3T Siemens Trio scanner using an EPI 

sequence (TR=2000 ms; TE=27 ms; 70° flip angle; FOV=192mm; 40 axial slices; 3mm isotropic 

voxels; 297 volumes). Participants were instructed to keep their eyes open during the scan. 

Functional images were preprocessed in the same fashion as our previous publication15 and 

parcellated using the standard Schaefer 200-17 network solution32. Regional timeseries were 

used to calculate local and global BOLD signal variability. 

 
fMRI Adult Lifespan Sample 2 
A total of 154 healthy adults age and gender matched to our Lifespan Sample 1, ages (Mage = 

49y, SDage = 19y, 62% F), from the Enhanced Nathan Kline Institute Rockland Sample50 were 

included in this study. Refer to fMRI Young Sample 2 for details about the resting-state data. 

 

MEG Sample 
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A total of 104 healthy young adults in the same age range 18-34 as our primary fMRI datasets 

(Mage = 28y, SDage = 4y, 56% F) from the Cambridge-Centre for Aging Neuroscience 

(CamCAN)55,56 were included in this study. Individuals provided written informed consent. 

Research was conducted in compliance with the Helsinki Declaration and was approved by the 

Cambridgeshire 2 Research Ethics Committee. 

All participants underwent an approximately 8-minute resting-state eye-closed MEG, 

and a structural T1 MRI. MEG data was collected from a 306-channel VectorView MEG system 

(Elekta Neuromag, Helsinki) with 102 magnetometers and 204 orthogonal planar gradiometers 

at 1,000Hz sampling rate. The head position of participants was continuously monitored using 

four Head-Position Indicator (HPI) coils, while ocular (EOG) and cardiac (ECG) external 

electrodes were used to monitor physiological artifacts. See55,56 for details on the dataset and 

data acquisition. 

MEG data were preprocessed using Brainstorm57. The preprocessing pipeline followed 

previous published work90. Line noise artifact (50 Hz; with 10 harmonics) were removed using 

a bank of notch filters, in addition to 88 Hz noise—a common artifact characteristic to the Cam-

CAN dataset. Slow-wave and DC-offset artifacts were removed with a high-pass FIR filter with 

a 0.3-Hz cut-off. Signal-Space Projectors (SSPs) were used to remove cardiac artifacts, and 

attenuate low-frequency (1–7 Hz) and high-frequency noisy components (40–400 Hz) due to 

saccades and muscle activity. The MRI volumes of each participant were automatically 

segmented using Freesurfer91 and co-registered to the MEG recording using approximately 100 

digitized head points. 

We constrained brain source models for each participant to their individual T1-weighted 

MRI data. We computed head models for each participant using the Brainstorm overlapping-

spheres approach, and cortical source models using the Brainstorm implementation of linearly-

constrained minimum-variance (LCMV) beamforming (2018 version for source estimation 

processes); both processes were run using default parameters. MEG source orientations at 

15,000 vertices were constrained normal to the cortical surface. We projected the resulting 

MEG source model for each participant onto the default anatomy of Brainstorm (ICBM152). We 

down-sampled the cortical source maps by averaging the time series within each parcel of the 

standard Schaefer 200-17 atlas32. This resulted in a matrix of 200 regions by 150 seconds of 

scouted MEG time series data per person. Regional timeseries data were used to calculate 

local MEG variability.  
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We computed power spectral density (PSD) estimates across all vertices of the source 

model using the Welch method with 2 second windows of 50% overlap. This resulted in PSD 

with a frequency resolution of 1/2 Hz. We down-sampled the PSD estimates to the Schaefer 

atlas by taking the mean spectral density within each ROI. We parametrized the resulting neural 

power spectra from 1-40Hz using the specparam algorithm as implemented in Brainstorm57 

with the following parameters: peak width limits [0.5 12]; maximum number of peaks: 3; 

minimum peak amplitude: 0.3 a.u.; peak threshold: 2.0 SDs; proximity threshold: 2.0 SDs; 

aperiodic mode: fixed. Finally, we extracted the aperiodic component from the resulting spectral 

models at each parcel, for each participant (i.e., 1/f exponent)67. 

 

Neurobiological data 
To contextualize local and global BOLD signal variability with multiscale descriptions of brain 

organization, we relied on multiple open-source repositories and toolboxes.  

 

Microscale data 
We included the principal axes of cytoarchitectural and microstructural differentiation obtained 

via a nonlinear manifold learning technique called diffusion map embedding92, on histological 

staining of a ex_vivo human brain and in_vivo quantitative T1 (qT1) data. 

The first gradient of cytoarchitectural differentiation was obtained from ultrahigh-

resolution histological information from the BigBrain dataset25. BigBrain is a three-dimensional 

model of an adult human brain (Caucasian male, age 65), reconstructed from 20-mm-thick 

slices of a coronally-sectioned, Merker-stained post-mortem specimen. The profile of staining 

intensity along the thickness of the cortical sheet is thought to capture the composition of local 

cellular assemblies. To assure coverage along the thickness of the cortical sheet, cellular 

staining intensity was sampled and averaged across equivolumetric intracortical surfaces at 

every voxel step for (100-mm voxels) across 163,842 vertices per hemisphere. The resulting 

staining intensity surface was then parcellated using an anatomical atlas-constrained clustering 

approach  which produced a 1,012-nodes solution for the BigBrain specimen, constrained by 

the Desikan-Killiany and Destrieux atlas boundaries. Pairwise product-to-moment correlation 

of nodal staining intensity profiles resulted in the affinity matrix used for gradient embedding.  

The first gradient of microstructural differentiation was obtained from qT1 intensities 

sampled from and averaged across 50 healthy young participants in an openly available dataset 
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(MICA-MICs)26. The profile of qT1 intensity along the thickness of the cortical sheet is shown 

to capture the variation in myelination in cortical regions. To assure coverage along the 

thickness of the cortical sheet on qT1 volumes, 14 equivolumetric intracortical surfaces were 

generated for each individual, and combined into vertex-wise averages. Intensity profile maps 

were then parcellated according to the Desikan-Killiany and Destrieux atlas and averaged 

across 50 healthy young adults. Cross-correlation of nodal qT1 intensity profiles computed with 

partial correlation, with whole-cortex intensity profile controlled for, followed by log-

transformation, resulted in the affinity matrix used for gradient embedding26. 

These two principal gradients of cytoarchitectural and microstructural differentiation were 

released with the BigBrainWarp toolbox in BigBrain native volume94. We resampled both 

gradients from BigBrain native volume to the standard volume defined by the 1mm isotropic 

ICBM 2009c Nonlinear Asymmetric brain template95 using linear interpolation. We finally 

parcellated both gradients using the standard Schaefer 200-17 parcellation solution32.  

Equally from BigBrainWarp, layer thickness data from the BigBrain specimen for all six 

cortical layers were additionally included in this study. Briefly, staining intensity profiles were 

obtained from curvature-adjusted equidistant sampling at 200 points along the thickness of the 

cortical sheet. Layer transitions were identified by a convolutional neural network guided by 

expert neuroanatomists96. We processed and parcellated thickness maps for each layer as 

above. Thickness values were averaged across layers I-III to obtain supragranular estimations 

and across layers V-VI for infragranular estimations. Layer IV thickness was referred to as 

granular in text. 

 

Mesoscale data 
We used openly available neurotransmitter receptor data from the Neuromaps toolbox29. 

Specifically, we included PET-derived receptor density distributions for the following 

neurotransmitter systems: serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6)97, dopamine 

(D198, D299), GABA (GABAa, GABAbz)100, glutamate (mGluR5)101, and acetylcholine (a4b2102, 

M1103). In addition to the receptor data from Neuromaps, we also include a map of NMDA 

receptor density, fetched from https://github.com/netneurolab/hansen_receptors104–106. All 

maps were parcellated with the standard Schaefer 200-17 parcellation solution32 using 

Neuromaps. 

Given the heterogeneity in the molecular and chemical composition of each brain region52,  

parcellated neurotransmitter receptor maps were used to compute the following regional 
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composite scores: receptor diversity, excitation/inhibition ratio, ionotropic density and 

metabotropic density. Receptor diversity was estimated via the normalized Shannon entropy H 

derived as shown in Eq. 1. d indicates a region’s normalized receptor composition, a vector 

wherein each value reflects each receptor’s density value normalized to its maximum value 

across brain regions. L is the total number of receptors, 13. Greater H values signify greater 

receptor diversity for a brain area. Regional excitation/inhibition ratio was computed as the ratio 

between the mean density of excitatory receptors and the mean density of inhibitory receptors 

for each region (see Table 1 for a breakdown of receptor effects and types). Regional ionotropic 

receptor density was calculated as the mean density of ionotropic receptors within each area. 

Similarly, regional metabotropic receptor density was obtained as the mean density of 

metabotropic receptors within each region. 

 

𝐻	 = −	
𝑠𝑢𝑚(𝑑 ∗ 𝑙𝑜𝑔(𝑑))

𝑙𝑜𝑔(𝐿)  

 

Table 1. Breakdown of neurotransmitter receptor effects and types included in this study. 

Neurotransmitter 

receptor 
Effect Type 

a4b2 excitatory ionotropic 

M1 excitatory metabotropic 
D1 excitatory metabotropic 
D2 inhibitory metabotropic 

GABAa inhibitory ionotropic 
GABAa-bz inhibitory ionotropic 
mGluR5 excitatory metabotropic 
NMDA excitatory ionotropic 
5HT1a inhibitory metabotropic 
5HT1b inhibitory metabotropic 
5HT2a excitatory metabotropic 
5HT4 excitatory metabotropic 
5HT6 excitatory metabotropic 

 

We computed the first principal component of gene expression from the Allen Human 

Brain Atlas27, what we referred in the study as “transcriptional/molecular gradient”. Regional 

microarray expression data were obtained from 6 post-mortem brains (1 female, ages 24-57y, 

Mage=42.5y, SDage=13.38y) and were processed using the Abagen toolbox28,107,108. To ensure 

Eq. 1 
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complete coverage across both hemispheres, we mirrored samples bilaterally and interpolated 

missing voxels using a nearest-neighbour approach. All other parameters in Abagen were set 

to default. Finally, we only retained genes with differential stability >= 0.1, as a means of filtering 

out genes with high variability across donors109. Altogether, 15,633 genes were used in the 

principal component analysis. Note that we followed the same processing pipeline as in110, 

except we used the Schaefer 200-17 parcellation solution32. 
 

Macroscale data  
We retrieved macroscale brain maps available through the Neuromaps toolbox29 and 

parcellated them with the standard Schaefer 200-17 network atlas32. These maps include: PET-

derived maps of oxygen metabolism, glucose metabolism, cerebral blood flow, and cerebral 

blood volume111; large-scale gradients of brain organization specifically the sensory-association 

axis31, the principal gradient of fMRI static functional connectivity30, and the MEG-derived 

intrinsic timescale112. Lastly, we calculated temporal autocorrelation scores on our two primary 

fMRI datasets by taking the product-to-moment correlation between successive timepoints (lag-

1) and alternate (lag-2) timepoints of each regional BOLD timeseries tailored to each sample’s 

TR, that is lag-1 autocorrelation for Young Sample 1 and lag-2 for Young Sample 2, and created 

group-level spatial maps. 

 
Local signal variability estimation 
Local fMRI BOLD signal variability 
Local BOLD signal variability was estimated for every individual within each main fMRI sample 

(Young Samples 1 & 2). Denoised regional BOLD timeseries were first mean-centered to a 

whole-brain mean of 0. Moment-to-moment temporal variability of the BOLD signal was then 

calculated by taking the root Mean Squared Successive Difference (rMSSD)33 of each 

normalized regional timeseries, as shown in Eq. 2, where x represents a region’s BOLD signal 

intensity at two successive timepoints i and i+1, and n is the total number of timepoints for that 

region. At each region, we took the square root of MSSD to preserve its original units (MSSD 

is equivalent to variance, rMSSD to SD). Greater rMSSD values are indicative of regions with 

greater local variability levels. 

𝑟𝑀𝑆𝑆𝐷 = 	4
∑ (𝑥!"# −	𝑥!)$%&#
!'#

𝑛 − 1  Eq. 2 
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Local MEG signal variability  
The same formula as above was used to derive regional moment-to-moment temporal 

variability of MEG timeseries via rMSSD.  

 

Global fMRI BOLD signal variability estimation & validation 
Estimation 
Global BOLD signal variability was estimated via dynamic functional connectivity for every 

individual within each fMRI sample (Young Samples 1 & 2, Lifespan Samples 1 & 2). First, each 

regional BOLD timeseries was partitioned in equally sized windows via a sliding window 

approach within each sample. Following recent guidelines113 to ensure reliable estimations, 

window width was chosen to comprise between 20 and 40 timepoints (TRs), window length 

was between 45 and 60sec, window shape was set to squared, Leonardi high pass filtering was 

applied114, and windows were shifted by 1 TR. Given the heterogeneity in sampling rate across 

fMRI samples, this procedure resulted in a different number of timepoints per window and in a 

different number of total windows across datasets (Young Sample 1: 60sec window, 20 TRs 

per window, 181 total windows; Young Sample 2: 45sec window, 32 TRs per window, 368 total 

windows; Lifespan Sample 1: 45sec window, 23 TRs per window, 275 windows; Lifespan 

Sample 2: 45sec window, 32 TRs per window, 368 total windows). For each window and 

dataset, we calculated functional connectivity measures per region pair, as their product-to-

moment correlation. NxNxT functional connectivity data tables for each individual were thus 

derived, where N is the number of regions and T the number of windows. Unlike most dynamic 

connectivity approaches that apply clustering methods on the data tables, in this study we 

wanted to minimize additional user input and maximize data fidelity. We therefore introduced 

covSTATIS to derive dynamic functional connectivity, an approach that does not rely on 

clustering analyses. As an extension of Principal Component Analysis, covSTATIS is a 

multidimensional scaling method that uses eigenvalue decomposition and Euclidean distance 

to evaluate the similarity of multiple data tables derived from the same set of observations34,35. 

In our case, we applied covSTATIS to examine, for each individual, how similar the connectivity 

of a brain region was with the rest of the brain, over time, that is across the connectivity data 

tables. First, we assessed, via the Rv similarity coefficient (i.e., squared product-to-moment 

correlation)40, the similarity across all data tables across all individuals within each sample. We 
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then calculated their weighted average (a NxN data table), to obtain a group compromise 

space, where regional connections more similar across time and individuals were given a higher 

weight, since they were most represented in the sample. We then submitted the group 

compromise space to eigenvalue decomposition and obtained a multivariate connectivity 

space, wherein regions that showed similar connectivity values over time were closer together 

than regions with less similar connectivity values across windows. covSTATIS next allowed us 

to back-project into this abstract multivariate Cartesian space, for every individual, each 

region’s mean connectivity value over time across all windows and around it, the region’s 

connectivity value for each window. Our last step involved calculating, for each individual, the 

area of the hull around each region’s mean connectivity over time. Each convex hull was peeled 

on 95% of data to control for outliers, similarly to traditional dynamic functional connectivity 

approaches39. Global BOLD variability thus corresponds to regional area of the hull values: a 

greater area of the hull indicates greater distance, hence spread, in connectivity across 

windows for a specific region, and is therefore characteristic of regions with greater global 

BOLD variability.  

 

Validation 
As a first validation step, we assessed the test-retest reliability of covSTATIS on our Young 

Sample 1, given the availability of two runs of resting-state fMRI data on the same individuals. 

After averaging covSTATIS-derived area of the hull values across subjects for each run 

separately, we correlated these values across regions between runs.  

As a second validation step, we implemented a multivariate analysis technique, Partial 

Least Squares (PLS)42,43,115, on our two Lifespan Samples, to test whether covSTATIS area of 

the hull measures were sensitive to known age-related alterations in dynamic functional 

connectivity across the adult lifespan. In other words, we interrogated the covariance between 

covSTATIS measures and age. Briefly, PLS calculates a covariance matrix between two (or 

more) sets of variables. This covariance matrix undergoes singular value decomposition and, 

as a result, orthogonal latent variables are generated (LVs; similar to principal components in 

PCA) which explain the covariance between the sets of measures. Resulting LVs consist of a 

left singular vector (U) of age weights, a right singular vector (V) of brain regions, and a diagonal 

matrix of singular values (S). Each element of V, also called loading/salience, represents the 

contribution of each region to each LV. To identify significant LVs, singular values were 

permuted 1000 times. For each individual, we obtained an estimate of the degree to which they 
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expressed a particular LV’s spatial pattern (brain score), by multiplying each regional loading 

by their original value and summing over all brain regions. We then correlated subject-level 

brain scores with age to establish the age contribution to the observed spatial pattern. 

Significant correlations were identified by bootstrapping with 1000 resamples the correlation 

values and generating 95% confidence intervals around the original correlation values. Lastly, 

to determine the significance of brain regions to each LV, we applied 1000 bootstrap resamples 

on the regional loadings. A t-like statistic was derived, the bootstrap ratio (BSR), which is the 

ratio of each regional weight to its bootstrapped standard error. We applied a threshold to BSRs 

at a value of ±2.  

 
Inter-sample reliability of local & global fMRI BOLD variability  
To evaluate the reliability of local and global BOLD variability, we contrasted local and global 

BOLD signal variability between our two main fMRI samples, Young Samples 1 & 2. We 

calculated reliability across brain regions at the group level, and within each brain region and 

network across samples. Group reliability across regions was derived via product-to-moment 

correlation between samples for each metric. Regional- and network-level reliability were 

instead estimated via independent t-tests, one test per region and one per network. This 

allowed us to assess mean differences in local and global BOLD variability levels across 

samples for each region and network. Reliability was determined at p>.05. 

 
Local & global fMRI BOLD variability topographies 
To examine the spatial organization of local and global BOLD variability for each of our main 

fMRI samples, we calculated group-level local and global BOLD variability for the whole brain 

and for each functional network separately. Despite using the Schaefer 200-17 parcellation 

solution32, we decided to reduce the number of networks from 17 to 7 to facilitate interpretation, 

by merging together regions from different subnetworks into their principal network (e.g., Visual 

Central and Peripheral into Visual).  

As a final step, we correlated group-level local and global BOLD variability spatial maps 

for each main fMRI sample, with 4 different spatial maps obtained on neurobiological data: the 

first gradient of cytoarchitectural differentiation, microstructural differentiation, 

transcriptional/molecular differentiation and static functional connectivity differentiation (details 

in previous sections). To test for significance, we applied 10,000 Hungarian spins on the 
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regional labels of local and global BOLD variability spatial maps116. This allowed us to obtain 

10,000 null models, while preserving spatial autocorrelation, to compare our original 

correlations against. 

 
Multiscale analyses 
We assessed the multiscale neurobiological correlates of local and global BOLD variability, 

separately for our two primary fMRI datasets, by relating group-level local and global BOLD 

variability maps to micro-, meso-, and macro-scale variables described in previous sections. 

We computed the product-to-moment correlation, across brain regions, between local and 

global BOLD variability and each neurobiological variable. To evaluate the significance of the 

correlations, we applied 10,000 Hungarian spins on the regional labels of local and global BOLD 

variability. Results are visualized in text as annoted heatmaps. For an alternative visualization, 

we entered all correlation values, separately for each fMRI sample, into the Fruchterman 

Reingold layout spring embedding algorithm and set an absolute threshold of 0.3. 

To quantify inter-sample convergence, we ran rank order correlations on the Fisher-z 

transformed correlations vectors characterizing the relationships between local and global 

BOLD variability, and multiscale variables, for each fMRI sample. 

To test for the central role of local and global BOLD variability in brain organization, we 

computed cartographical analyses, similarly to62,63, on our sample-specific multiscale 

correlation matrices. We first assigned (1) local and global BOLD variability, (2) microscale 

variables, (3) mesoscale and (4) macroscale measures to four different communities. We then 

took the absolute value of the reported correlations and calculated, for each fMRI sample, the 

participation coefficient of local and global BOLD variability. Briefly, participation coefficient 

scores allowed us to determine how evenly distributed across spatial scales, the correlations 

of local and global BOLD variability were, for each fMRI data type: the closer the score to 1, the 

greater their multiscale participation64.  

Finally, to assess the unique contribution of each multiscale variable in predicting local and 

global BOLD variability, we ran a dominance analysis (DA) per each metric and sample. DA 

was run predicting local and global BOLD variability from all multiscale variables at once. DA 

allowed us to estimate the relative importance of each predictor in a single multiple regression 

model. DA contrasts two predictors at a time against all possible sub-models (2p-1 sub-models, 

p being the total number of predictors) and quantifies the incremental contribution of each 
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predictor when added to each subset of the remaining predictors, as the increase in R2. In our 

study, we derived percentage scores for each predictor indicating their unique contribution to 

the prediction model65.  

 
Multimodal analyses 
Similarly to how we characterized the topography of local and global fMRI BOLD variability, we 

delineated the spatial organization of group-level local MEG variability for the whole brain and 

for each functional network separately. We also obtained individual-level local MEG variability 

scores and 1/f exponent measures per network, akin to our fMRI analyses (see previous 

section). For each subject, we then averaged both estimates across brain regions to obtain 

whole-brain local MEG variability and 1/f exponent per person, that we could then correlate to 

each other. To expand on this whole-brain analysis, we built a hierarchical linear model where 

we accounted for regional heterogeneities in local MEG variability and 1/f exponent values 

(Figure S4). Each region was entered in the model as a random effect to investigate region-

level relationships between local MEG variability and the 1/f exponent. 

Next, we simulated naturalistic neurophysiological time series at various arrhythmic 

motifs using the NeuroDSP toolbox69. Each simulation was 150sec long, linearly combined 

rhythmic and arrhythmic (i.e., periodic & aperiodic) components at random initial phases, and 

was sampled at 500Hz. The simulated periodic component of each timeseries consisted of a 

fixed alpha (peak frequency of 10Hz, amplitude of 0.7 a.u., and band width of 2Hz) and beta 

peak (peak frequency of 19Hz, amplitude of 0.4 a.u., and band width of 5Hz). We simulated 10 

timeseries at various aperiodic slope parameters ranging from -0.7 to -1.5 in steps of -0.1. The 

parameters for simulations were selected based on pervious literature67. We used these 

simulations to test for the linear relationship between the steepness of the 1/f exponent and 

local MEG variability. 

Lastly, to investigate multimodal correlates of local brain variability, we related group-

level spatial maps of local fMRI BOLD variability (Young Sample 1 & 2) to group-level spatial 

maps of local MEG variability, via product-to-moment correlations.  

 

Data availability 
Resting-state fMRI data from Young Sample 1 can be accessed on OpenNeuro at the following 

link: https://openneuro.org/datasets/ds003592/versions/1.0.13. Resting-state fMRI data from 
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Young Sample 2 and Lifespan Sample 2 are available for download at the following link: 

http://fcon_1000.projects.nitrc.org/indi/enhanced/. Resting-state MEG data can be accessed by 

requesting the data at: https://www.cam-can.org/index.php?content=dataset. Microscale 

neurobiological data are downloadable from the BigBrainWarp Toolbox: 

https://bigbrainwarp.readthedocs.io/en/latest/pages/installation.html. Mesoscale and 

macroscale neurobiological data are retrievable from the Abagen and Neuromaps toolboxes: 

https://github.com/netneurolab/abagen; https://github.com/netneurolab/neuromaps. 

 

Code availability 
All code to reproduce data analyses is currently being compiled and can be found on GitHub at 

the following link: https://github.com/giuliabaracc/BiologicalVariability/tree/main.  
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