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Basal forebrain degeneration precedes and predicts
the cortical spread of Alzheimer’s pathology
Taylor W. Schmitz1,2, R. Nathan Spreng3 & The Alzheimer’s Disease Neuroimaging Initiativew

There is considerable debate whether Alzheimer’s disease (AD) originates in basal forebrain

or entorhinal cortex. Here we examined whether longitudinal decreases in basal forebrain and

entorhinal cortex grey matter volume were interdependent and sequential. In a large cohort of

age-matched older adults ranging from cognitively normal to AD, we demonstrate that basal

forebrain volume predicts longitudinal entorhinal degeneration. Models of parallel

degeneration or entorhinal origin received negligible support. We then integrated volumetric

measures with an amyloid biomarker sensitive to pre-symptomatic AD pathology.

Comparison between cognitively matched normal adult subgroups, delineated according to

the amyloid biomarker, revealed abnormal degeneration in basal forebrain, but not entorhinal

cortex. Abnormal degeneration in both basal forebrain and entorhinal cortex was only

observed among prodromal (mildly amnestic) individuals. We provide evidence that

basal forebrain pathology precedes and predicts both entorhinal pathology and memory

impairment, challenging the widely held belief that AD has a cortical origin.
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A
lzheimer’s disease (AD) is a neurodegenerative
disorder characterized by distributed amyloid and tau
pathophysiology throughout the brain. Recent break-

throughs in molecular genetics have identified a trans-synaptic
mechanism by which these pathologies spread across
anatomically and functionally linked cortical regions1–4 within
a large-scale brain network5–7. These findings have potential
for novel biomarkers and therapeutic strategies aimed at
identifying the earliest signs of pathology and preventing its
spread, before the onset of clinical AD.

However, the initial stages of AD pathophysiology remain ill
defined8,9, preventing a clear picture of what regions to target
as the earliest points of spread. The prevailing model suggests
that amyloid and tau deposition first appear within the
transentorhinal and entorhinal cortex (EC)10–13. This model
has been called into question by histological14–18 and in vivo
structural imaging evidence19,20 of early pathological change to
the nucleus basalis of Meynert (NbM) in the basal forebrain.
The cholinergic cells of the NbM and their cholinoreceptive
targets in EC exhibit particular sensitivity to neurofibrillary
degeneration in the early stages of AD14–18, possibly even
before the onset of cognitive symptomatology14,19. One possible
explanation for these competing findings is that the early
emergence of pathology in NbM and EC occurs in parallel.
A second unexplored possibility points to pathological spread
from one structure to the other, indicating that NbM may
constitute an earlier target of AD.

Both the NbM and EC are components of the basolateral
strip, an uninterrupted band of core limbic cell groups
that also includes the hippocampus, amygdala and
pyriform cortex14. The EC receives projections from NbM
and adjacent diagonal band of Broca in the primate21,22 and
human23 brain. This primarily cholinergic innervation forms
a functional pathway24,25 involved in the encoding of novel
information26, possibly by enhancing perceptual discrimination
of sensory input27,28. Recently, a paradoxical phenomenon
of increased memory recall for task-incidental information in
older adults has been linked to altered attentional modulation
of sensory input at early stages of encoding29–32, possibly arising
from the loss of central cholinergic integrity31,32. Clarification
of whether pathophysaiology in these regions manifests at the
same time, or in a predictive sequence, is therefore crucial to
our understanding of the early anatomical staging of AD11 and of
how this pathway may influence cognitive decline.

Given the early degeneration of NbM neurons in AD, as well
as the anatomical and functional organization of the NbM—EC
pathway, we predicted that NbM structural integrity would
selectively determine downstream atrophy in EC. Neuroimaging
biomarkers such as subregional anatomical changes in grey
matter (GM) volume33 are very highly correlated with the
pathophysiological lesions of AD34–36. To our knowledge,
measures of GM volume have not been used to track whether
longitudinal changes in different regions are interdependent.
In the present study, we evaluated the hypothesis of predictive
pathological spread first by examining whether degeneration
in NbM and EC over time exhibits interdependence and
directionality. However, by itself, such a relationship does not
indicate that an underlying pathology drives the interregional
degenerative cascade. We therefore integrated our volumetric
measures, in the same individuals, with a molecular biomarker of
neuronal amyloid deposition that is extremely sensitive to AD
pathophysiology at early presymptomatic stages of disease37,38.
This strategy enabled us to test the second and critical hypothesis
regarding the predictive sequence of NbM and EC degeneration
across individuals at different stages of disease. Specifically,
if pathology arises in NbB before spreading to EC, then

degeneration in NbM and EC should dissociate at early pre-
symptomatic stages of AD.

To interrogate these hypotheses, we performed longitudinal
voxel-based morphometry (VBM) analyses on three
high-resolution anatomical magnetic resonance imaging (MRI)
brain volumes acquired over a 2-year period: T1 (baseline), T2
(1-year interval) and T3 (2-year interval) from a large,
age-matched older adult sample (N¼ 434) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)39. In addition to
healthy controls (HCs; n¼ 150), the sample consisted of three
groups characterized by different stages of AD as follows: mild
cognitive impairment (MCI) individuals who did not progress
to AD status from T1 to T3 (MCI-NP; n¼ 103), MCI individuals
who progressed to AD status at T3 (MCI-AD; n¼ 84) and
individuals classified as AD throughout (AD; n¼ 97). A priori
regions of interest (ROIs) were specified from probabilistic
anatomical maps of the EC, the Ch4 region of the basal forebrain
(the magnocellular group corresponding to NbM) and a control
region in the primary somatosensory cortex (PSC; see Fig. 1).

We demonstrate that baseline Ch4 volumes predicted
longitudinal decreases in EC volume. By contrast, baseline EC
volumes did not predict longitudinal decreases in Ch4 volume,
ruling out the alternative explanations that EC precedes Ch4
degeneration, or that EC and Ch4 degeneration occurred in
parallel (are mutually predictive). The predictive relationship
of Ch4 volume was specific to EC: no such relationship was
detected between Ch4 and the control PSC region. We next
confirmed that the observed Ch4-EC predictive relationship
was driven by a sequential staging of AD pathology. To do so, we
used concentrations of cerebrospinal amyloid (Ab1–42) to
distinguish, within the cognitively healthy older adult sample,
individuals expressing Ab1–42 levels diagnostic of pre-
symptomatic AD. We isolated an abnormal pattern of
degeneration in Ch4, but not in EC, among cognitively
healthy adults expressing Ab1–42 levels of pre-symptomatic AD.
Abnormal degeneration of both Ch4 and EC was only detected
at later stages of disease—among (MCI-NP) individuals
expressing AD-diagnostic levels of Ab1–42—when short-term
memory impairment was clinically detectable. Regression-based
mediation and conditional process models revealed that EC
degeneration mediates the relationship between Ch4 integrity and
memory impairment, and that AD pathology (Ab1–42) moderates
this mediation effect. Our results show that in the staging of AD,
Ch4 degeneration precedes and predicts EC degeneration,
with memory impairment emerging only after pathology spreads
from Ch4 to EC. Moreover, our results suggest that abnormal
Ch4 degeneration is either clinically invisible, or that the
neuropsychological tests currently in widest use are not sensitive
to this early subcortical stage of AD.

Results
GM volume changes as a function of diagnostic group. We first
examined whether and how GM volume (T1–T3) changed over the
study period as a function of diagnostic group (HC, MCI-NP,
MCI-AD and AD) and ROI (Ch4, EC and PSC). See
Supplementary Table 1 for a complete list of ADNI individuals
included, Fig. 1 for ROIs and Methods for GM volumetry). The
Group and ROI factors were entered into a 4� 3 repeated-
measures analysis of variance (ANOVA), which included age, sex,
education, head size and longitudinal changes (T1–T3) in
whole-brain GM volume as covariates. We detected a significant
main effect of Group (F3,425¼ 32.2148, Po0.001) and Group�
ROI interaction (F6,850¼ 13.53, Po0.001; see Fig. 2a). We therefore
decomposed the full factorial model into separate ANOVA models,
one for each ROI, to assess the effect of clinical diagnosis on GM
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degeneration in each brain region. Magnitudes of GM degeneration
in both Ch4 and EC were significantly impacted by diagnosis (Ch4:
F3,425¼ 5.33, P¼ 0.001; EC: F3,425¼ 53.39, Po0.001), which incre-
ased with clinical progression of AD. By contrast, magnitudes of
GM degeneration in the PSC control region did not significantly
differ as a function of diagnosis (F3,425¼ 2.10, P¼ 0.10). Control-
ling for the same covariates, we observed a highly similar pattern of
results when comparing baseline GM volume (T1) as a function of
diagnostic group (HC, MCI-NP, MCI-AD and AD) and ROI (Ch4,
EC and PSC). Specifically, the 4� 3 ANOVA revealed a significant
main effect of Group (F3,425¼ 49.32, Po0.001) and Group�ROI

interaction (F6,850¼ 18.02, Po0.001), with clinical progression to
AD affecting baseline Ch4 and EC volumes more strongly than
PSC (see Fig. 2b). Taken together, these initial findings confirm that
our MRI measures are sensitive to local subregional, as opposed to
global, anatomical changes in GM volume33 and, moreover, that
these changes increase with the clinical progression to AD.

Parallel versus predictive spread of degeneration in Ch4 and EC.
We next assessed the competing hypotheses of parallel versus
predictive spread of degeneration. To begin with, we made no

a

b

c

Figure 1 | A priori ROIs. (a) Basal forebrain NbM; area Ch4 (b) EC and (c) PSC. The ROIs are displayed in Montreal Neurological Institute (MNI) space on

coronal (left column) and sagittal (right column) slices.
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assumptions about AD pathology in terms of diagnosis
(group status) and thus used multiple regression analyses
inclusive of the entire sample (N¼ 434). At baseline (T1),
degeneration will already vary significantly across individuals.
Smaller T1 GM volumes in EC and Ch4 should therefore
reflect more advanced stages of GM degeneration before the
baseline scan, after accounting for individual differences in age,
sex, education, head size and whole-brain GM volume. Moreover,
between time points T1 and T3 of the study period, pre-baseline
degeneration is expected to progress in both EC and Ch4, but at a
rate dependent on a given individual’s baseline status40. Hence, T1
GM volume should predict the magnitude of post-baseline
degeneration between time points at both 1-year (T1–T2) and
2-year (T1–T3) intervals.

According to a parallel staging model, pre-baseline
degeneration in either region should predict post-baseline
degeneration in the other, because both regions are affected by
the same pathology at the same time. In Fig. 3a, parallel spread
would be represented by superimposed degenerative trajectories
in Ch4 and EC (not pictured). By contrast, according to
the predictive staging model, pre-baseline degeneration in one
region should only predict post-baseline degeneration in the other
due to the spread of pathology over time. We contrasted the
hypothesized Ch4-EC model against a competing EC-Ch4
model, where pathology originates in EC and spreads
to subcortical areas of the interconnected basolateral strip
(see Fig. 3a,b). In either of these scenarios, smaller T1 volumes
(higher pre-baseline degeneration) in the source region should
predict larger magnitudes of volumetric decrease (higher
post-baseline degeneration) in the target region, yielding a
negative relationship (see Fig. 3c). Based on existing models of
AD progression41–43, we predicted that the rate of change in
GM degeneration would follow a nonlinear sigmoid shape.
In prior volumetric MRI work, rates of GM degeneration have
been shown to accelerate as patients approach clinical
dementia44,45. A sigmoid shape as a function of time thus
indicates that GM degeneration is not constant, but rather varies
over the course of disease progression.

We evaluated these competing inter-regional hypotheses over
both 1- and 2-year intervals. The EC-Ch4 regression model
revealed virtually no relationship between pre-baseline
degeneration in EC and post-baseline degeneration in Ch4
at 1-year (t429o1, r¼ � 0.03, P¼ 0.50) and 2-year intervals
(t429o1, r¼ � 0.02, P¼ 0.69), after accounting for age, sex,
education, head size and longitudinal changes in whole-brain GM
volume (see Fig. 3d). By contrast, the Ch4-EC regression model
yielded a significant negative relationship between pre-baseline
degeneration in Ch4 and post-baseline degeneration in EC

at 1-year (t429¼ � 4.78, r¼ � 0.21, Po0.001) and 2-year
intervals (t429¼ � 5.26, r¼ � 0.25, Po0.001; see Fig. 3e).
Taken separately, the coefficients produced by the EC-Ch4
and Ch4-EC staging models strongly favour the Ch4-EC
model, but they do not provide a direct quantitative comparison
between the two models. We therefore computed a test of the
equality of these two coefficients (see Methods). We found
that the negative relationship observed in the Ch4-EC
model was significantly stronger than the EC-Ch4 model at
both 1-year (z¼ 2.77, P¼ 0.003) and 2-year intervals (z¼ 3.77,
Po0.001; see Fig. 3f).

We next explored the possibility that Ch4 predicts a general
pattern of degeneration in neocortex, irrespective of focal
susceptibility to AD or anatomical connectivity. If this were
the case, pre-baseline degeneration in Ch4 should predict
post-baseline degeneration even in cortical sites relatively spared
by AD pathology, such as somatosensory cortex (PSC ROI). As
with the direct model comparisons between Ch4 and EC (Fig. 3f),
we first directly compared the Ch4-PSC model against the
reverse PSC-Ch4 model, to determine whether pre-baseline
degeneration in one region preferentially predicts post-baseline
degeneration in the other. However, no differences were detected
between these models at either 1-year (z¼ 0.076, Ptwo-tailed¼ 0.94)
or 2-year intervals (z¼ � 1.27, Ptwo-tailed¼ 0.20). We next directly
compared the Ch4-PSC model against the observed Ch4-EC
model. To do so, we computed a test of the equality of the two
coefficients produced by the Ch4-EC and Ch4-PSC models
(see Methods). The negative relationship produced by the
Ch4-EC model was significantly stronger than the Ch4-PSC
model at both 1-year (z¼ � 2.22, Ptwo-tailed¼ 0.03) and 2-year
intervals (z¼ � 2.37, Ptwo-tailed¼ 0.02). These results suggest that
Ch4 does not predict a general pattern of neocortical degeneration,
but rather is selective to anatomically connected cortical targets
known to be affected in the early pathological staging of AD.
Together, the results from our multiple regression analyses support
the hypothesis that changes in GM volume between Ch4 and EC
are interdependent rather than coincidental, with pre-baseline Ch4
degeneration selectively predicting the downstream degenerative
trajectory in EC.

Amyloid staging of AD confirms Ch4 precedes EC degeneration.
Although our regression models establish evidence for a
predictive sequence of GM degeneration from Ch4 to EC, by
themselves they do not reveal how this pattern is influenced by
AD pathology. We therefore next turned to the critical question
of whether the observed pattern of Ch4-EC spread constitutes a
previously unknown early link in the predictive pathological
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staging of AD. To do so, we obtained cerebrospinal fluid
(CSF) measures of the Amyloid-b1 to 42 peptide (Ab1–42), which
were available in a subset of our sample (N¼ 244). Data from
the ADNI Cores were recently integrated to generate a model
for the temporal ordering of AD biomarkers38,46, which indicates
that Ab1–42 is the first biomarker to become abnormal,
followed by changes in other AD biomarkers (CSF tau, F-18
fluorodeoxyglucose-positron emission tomography) and, lastly,
the onset of clinical symptoms. Crucially, receiver operating
curve analysis of autopsy-confirmed AD cases versus normal
controls has provided a cutpoint for CSF Ab1–42 concentration
at which diagnostic sensitivity and specificity to AD is maximal
(192 pg ml� 1), yielding correct detection of 96.4%
(concentrations below 192 pg ml� 1) and correct rejection of
95.2% (concentrations above 192 pg ml� 1)37. We therefore first
partitioned our sample into normal Ab (individuals who fell
above the 192 pg ml� 1 Ab1–42 cutpoint) and all individuals below
this cutpoint expressing AD neuropathology (Abþ ). Individuals
presenting abnormal cognitive impairment but normal CSF Ab
levels were excluded from all forthcoming analyses, as their
cognitive symptoms are likely to be caused by non-AD pathology,
for example, vascular dementia and hippocampal sclerosis. Of
these individuals, 19 were MCI-NP, 4 were MCI-AD and
5 were AD. This left a total remaining sample size of 216:

HCs with normal Ab (HCNAb: n¼ 52) and Abþ individuals
(n¼ 164). We next further partitioned the Abþ group according
to clinical diagnoses. This yielded the following four subgroups:
individuals in the clinically silent phase of AD (HCAbþ : n¼ 28),
MCI non-progressors (MCI-NPAbþ : n¼ 39), MCI-AD (MCI-
ADAbþ : n¼ 41) and AD subgroups (ADAbþ : n¼ 56). This
analysis strategy enabled us to explore the predictive sequence of
Ch4 and EC degeneration due to AD neuropathology across
individuals at difference clinical stages of AD.

The five subgroups (HCNAb, HCAbþ , MCI-NPAbþ ,
MCI-ADAbþ and ADAbþ ) were first submitted to a 5� 3
(ROI) repeated-measures ANOVA, which included age, sex,
education, head size and longitudinal changes in whole-brain
GM volume as covariates. This model revealed a significant
Group�ROI interaction (F8,412¼ 6.15, Po0.001). This
interaction was not dependent on GM degeneration in the PSC
control region, as confirmed by a follow-up 5� 2 ANOVA, which
excluded this ROI (F4,206¼ 6.98, Po0.001). We therefore focused
next on how Ch4 and EC degeneration differentially increased as
a function of AD neuropathology and clinical diagnosis.

If AD neuropathology in Ch4 precedes and predicts EC, as
proposed by the Ch4-EC model of predictive pathological
spread, then Ch4 and EC degeneration should dissociate at early
stages of disease (Fig. 4a). Consistent with this model, an
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independent samples t-test comparing the Ch4 ROI between
the HCNAb and HCAbþ subgroups revealed significantly larger
magnitudes of GM degeneration in the clinically silent HCAbþ
subgroup (t78¼ 1.9, P1-tail¼ 0.03, d¼ 0.50). No between-
group differences were detected in EC (t78¼ 0.19, P1-tail¼ 0.85,
d¼ 0.05) or in PSC (t78¼ 1.07, P1-tail¼ 0.16, d¼ 0.33; see
Fig. 4b). Crucially, this pattern of Ch4 degeneration was clinically
silent: no differences in cognitive function between HCNAb and
HCAbþ subgroups were detected on any measure collected in the
ADNI neuropsychological battery, even when averaging scores
across study time points to produce the most stable estimates of
cognitive function (see Table 1). These findings thus reveal a
striking anatomical dissociation between Ch4 and EC degenera-
tion in the clinically silent HCAbþ subgroup, suggesting that EC
is relatively spared alongside Ch4 atrophy within cognitively
normal individuals expressing the Ab biomarker of probable AD.

As expected, we observed impairment in memory in the
MCI-NPAbþ compared with the HCAbþ subgroup, which was
most pronounced for delayed recall performance on the Logical

Memory Test (see Table 2). Predictive pathological spread in the
Ch4-EC pathway was thus predicted to be at a more advanced
stage among MCI-NPAbþ individuals, with evidence of spread
to EC (Fig. 4a). Consistent with this hypothesis, independent
samples t-test confirmed significantly larger magnitudes of EC
GM degeneration in the MCI-NPAbþ subgroup compared with
the HCAbþ subgroup (t65¼ 2.05, P1–tail¼ 0.02, d¼ 0.51).
No between-group difference was detected in Ch4 (t89¼ 0.29,
P1-tail¼ 0.39, d¼ 0.07), due to the abnormal elevation of Ch4 GM
degeneration in both of the HCAbþ and MCI-NPAbþ subgroups.
Moreover, no between-group difference was detected in PSC
(t89¼ 0.04, P1-tail¼ 0.48, d¼ 0.01). In sum, compared with the
isolated Ch4 pathology observed in HCAbþ subgroup, we
observed both Ch4 and EC pathology in the MCI-NPAbþ
subgroup (Fig. 4b). Taken together, these two patterns of
degeneration in the Ch4-EC pathway distinguish the clinically
silent and early prodromal phases of AD, strongly supporting
the sequential staging of AD pathology from Ch4 to EC.
By integrating volumetric and molecular biomarkers from the
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Table 1 | Biomarker staging of AD pathology in the HC group.

HC subgroups

HCNAb HCAbþ t-test

Demographics
Sex (male, female) 52 (25, 27) 28 (15, 13) t¼0.46, P¼0.65
Age (s.d.) 75.12 (4.54) 75.61 (5.50) t¼0.41, P¼0.69
Education (s.d.) 15.67 (2.77) 15.39 (3.32) t¼0.38, P¼0.71

Cognitive measure
Logical memory (immediate) 14.72±0.37 14.73±0.60 t¼0.003, P¼0.50
Logical memory (delayed) 13.47±044 13.51±0.67 t¼0.06, P¼0.48
RAVLT (immediate) 8.35±0.32 8.14±0.54 t¼0.33, P¼0.37
RAVLT (delayed) 7.62±0.40 8.0±0.58 t¼0.55, P¼0.30
RAVLT (recall) 13.17±0.24 13.05±0.34 t¼0.39, P¼0.38
Boston Naming Test 27.96±0.35 27.81±0.42 t¼0.28, P¼0.39
Semantic Fluency A 20.01±0.64 19.45±0.65 t¼0.61, P¼0.27
Semantic Fluency V 15.03±0.43 14.26±0.61 t¼ 1.03, P¼0.16
CDR 0.02±0.01 0.01±0.03 t¼0.42, P¼0.34

AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; HC, healthy control; RAVLT, Rey Auditory Verbal Learning Test.
Within subjects, values for each neuropsychological test were first averaged across the three time points of the study, to produce the most reliable estimate. Tabled values are the mean of each
subgroup±s.e.m. All t-statistics are independent samples t-tests, with 78 degrees of freedom (equal variances not assumed). Cognitive differences are assessed using a one-tailed alpha. Age and
education values are in years.
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ADNI, structural MRI can thus potentially be leveraged beyond
its established sensitivity to early AD pathology.

At increasingly advanced stages of AD, abnormal Ch4 and EC
degeneration becomes more difficult to detect against the
background of global cortical degeneration. Comparing between
the MCI-ADAbþ and ADAbþ subgroups, magnitudes of GM
degeneration were indistinguishable in both Ch4 (t95¼ 0.19,
P1-tail¼ 0.85, d¼ 0.04) and EC (t95¼ 0.80, P1-tail¼ 0.43, d¼ 0.19),
despite being substantially elevated relative to the HCNAb,
HCAbþ and MCI-NPAbþ subgroups (Fig. 4b). This observation
serves to highlight the importance of both EC and Ch4 as
important early indicators of pathological change, which lose
their viability as biomarkers with the current clinical tools used to
detect AD progression.

A hypothesized subcortical–cortical pathway to AD. Thus far,
we have shown evidence that GM integrity in Ch4 predicts
subsequent GM degeneration in EC, and that abnormal Ch4 GM
degeneration precedes both memory impairment and abnormal
EC degeneration in the pathological staging of AD. These
findings suggest a subcortical–cortical pathway to AD, with the
spread of pathology from Ch4 to EC inducing selective
impairments in memory recall for novel information. We
therefore next examined with mediation analyses47 how the
regression-based evidence of Ch4-EC predictive pathological
spread may relate to memory dysfunction. Critically, we then
used conditional process analysis to determine whether these
relationships are dependent on the presence of AD
neuropathology (see Methods).

To do so, we first used multiple linear regression analysis of
the entire study sample (N¼ 434) to determine whether a
relationship existed between pre-baseline degeneration in Ch4
(T1 volume) and memory recall performance. The latter was
indexed from the Logical Memory Test delayed recall score, given
its observed sensitivity to early impairments in the MCI-NPAbþ
group (see Table 2). We found a significant positive relationship
(r¼ 0.33, t¼ 7.30, Po0.001), whereby smaller Ch4 GM volumes
predicted lower recall performance, after accounting for age, sex,
education, head size and longitudinal changes in whole-brain GM
volume. However, our findings from the Ab1–42 staging of Ch4
and EC degeneration indicate that deficits in memory recall

manifest only once pathological spread from Ch4 to EC has
occurred. If this is the case, then the observed relationship
between Ch4 atrophy and impaired recall should be better
accounted for by modelling the Ch4-EC pathway. We tested
this hypothesis using a mediation analysis, which included
post-baseline EC degeneration (T1–T3) as an indirect pathway
between Ch4 and delayed recall. Path a in the mediation model
thus replicates the prior Ch4-EC regression model. The
same nuisance covariates used in the linear regression were
included in the mediation model (see Methods). The boot-
strapped unstandardized indirect effect was 6.76, with the 95%
confidence interval (95% CI) ranging from 4.22 to 9.68, indicating
a significant mediation. We further confirmed the significance of
this mediation effect using the Sobel test (z¼ 4.73, Po0.001).
We also confirmed the anatomical specificity of this mediation
effect by performing a second control analysis, substituting
EC with PSC. This single alteration to the model abolished the
mediation effect (unstandardized indirect effect¼ 0.26, 95% CI
(� 0.19 to 1.33); Sobel z¼ 0.75, P¼ 0.46).

Our Ch4-EC regression and mediation results demonstrate
that pathology originating in Ch4 gives rise to memory
dysfunction through predictive spread to EC. To confirm that
the mediation effect is indeed dependent on AD neuropathology,
we returned to the subsample of individuals in whom CSF Ab
measures were available (N¼ 216). We first confirmed that the
regression and mediation findings observed in the whole sample
held in the subsample (regression model: r¼ 0.32, t¼ 4.84,
Po0.001; mediation model: unstandardized indirect effect¼ 8.60,
95% CI (4.93 to 12.99), Sobel z¼ 3.86, Po0.001; PSC control
mediation model: unstandardized indirect effect¼ 0.67, 95% CI
(� 0.21 to 3.01); Sobel z¼ 0.93, P¼ 0.35; see Fig. 5a,b). We next
re-partitioned the subsample according to those who fell below or
above the 192 pg ml� 1 Ab1–42 cutpoint at which AD diagnostic
accuracy is maximal37, that is, the HCNAb (N¼ 52) and Abþ
(N¼ 164) groups. The two groups were coded as a dichotomous
moderator variable. We were thus able to determine whether the
observed Ch4-EC-Recall mediation effect was moderated by
the presence of AD neuropathology. Specifically, we hypothesized
that the Abþ group would drive the mediation effect by
increasing the strength of the relationships on both the Ch4-EC
path (a) and the EC-Recall path (b). As before, we included age,
sex, education, head size and longitudinal changes in whole-brain

Table 2 | Biomarker staging of AD pathology in the HC and MCI-NP groups.

Subgroups

HCAbþ MCI-NPAbþ t-test

Demographics
Sex (male, female) 28 (15, 13) 39 (24, 15) t¼ 1.29, P¼0.20
Age (s.d.) 75.61 (5.50) 73.05 (6.96) t¼ 1.67, P¼0.10
Education (s.d.) 15.39 (3.32) 16.26 (2.71) t¼ 1.13, P¼0.26

Cognitive measure
Logical memory (immediate) 14.73±0.60 7.51±0.43 t¼9.72, Po0.001
Logical memory (delayed) 13.51±0.67 4.27±0.52 t¼ 10.86, Po0.001
RAVLT (immediate) 8.14±0.54 3.79±0.40 t¼ 6.44, Po0.001
RAVLT (delayed) 8.0±0.58 2.77±0.45 t¼ 7.12, Po0.001
RAVLT (recall) 13.05±0.34 9.64±0.47 t¼ 5.88, Po0.001
Boston Naming Test 27.81±0.42 26.01±0.84 t¼ 1.91, P¼0.03
Semantic Fluency A 19.45±0.65 15.63±0.68 t¼4.05, Po0.001
Semantic Fluency V 14.26±0.61 10.57±0.51 t¼4.66, Po0.001
CDR 0.01±0.03 0.49±0.01 t¼ 14.87, Po0.001

AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; HC, healthy control; MCI-NP, mild cognitive (who did not progress to probable AD); RAVLT, Rey Auditory Verbal Learning Test.
Within subjects, values for each neuropsychological test were first averaged across the three time points of the study, to produce the most reliable estimate. Tabled values are the mean of each
subgroup±s.e.m. All t-statistics are independent samples t-tests, with 65 degrees of freedom (equal variances not assumed). Cognitive differences are assessed using a one-tailed alpha. Age and
education values are in years.
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GM volume as covariates. Consistent with our hypotheses, a
significant mediation effect was detected in the Abþ subgroup
(unstandardized indirect effect¼ 6.11, 95% CI (2.49 to 10.48)).
The mediation effect was abolished altogether in the HCNAb
subgroup (standardized indirect effect¼ � 1.90, 95% CI
(� 6.78 to 0.30)). A direct test of the equality between
these conditional indirect effects in each subgroup confirmed
that they differed significantly (unstandardized moderation
effect¼ � 8.01, 95% CI (� 13.81 to � 3.46); see Fig. 5c).
We therefore provide evidence of a conditional process model
for early predictive pathological staging in the Ch4-EC pathway.
This model links the Ch4-EC degenerative sequence to memory
dysfunction and reveals that this process is dependent on AD
neuropathology.

Discussion
In sum, our findings build on a varied body of histological evidence,
which collectively point to both Ch4 and EC as early targets of AD
pathology8. The cell groups constituting these structures are among
the first to express intraneuronal neurofibrilliary tangles and
Ab-containing plaques in cognitively normal older adults. They are
also among the cell groups most devastated by tangles and plaques
in MCI and AD8,11,14. The proliferation of tangles and plaques
in these structures leads to depletion of axons and cell loss, both of
which contribute to microstructural decreases in volume8,15,17,18.
Our in vivo structural data are sensitive to these volumetric
changes, which we confirmed through regression analyses with
the CSF Ab1–42 biomarker of amyloid pathology. Strikingly, by
leveraging the biomarker data to identify cognitively normal
individuals expressing AD neuropathology, we show that abnormal
changes in Ch4 GM volume were apparent even in clinically silent
stages of probable AD.

Several lines of evidence have diminished the role of cholinergic
degradation in the cognitive dysfunctions of AD9,48–50, which
appears at odds with the histological evidence emphasizing a
cholinergic lesion in AD pathology. Our findings reconcile the
contention that Ch4 is at once a central pathological target of AD,
but also that Ch4 pathology by itself does not account for the
memory impairments observed in AD9. We isolated abnormal
degeneration to Ch4 in the clinically silent stage (HCAbþ ), before
cognitive symptoms were detectable on any of the ADNI neuro-
psychological measures. Memory dysfunction manifested only later
in the progression of AD, among MCI-NPABþ individuals expre-
ssing abnormal degeneration in both Ch4 and EC. Hence, it is a
lesion of the Ch4-EC pathway, causally induced by predictive
pathological spread, which gives rise to the memory dysfunctions
observed in early AD. This interpretation is consistent with animal
work showing that neurotoxic lesions to either Ch4 or EC yield only
moderate impairments in memory, whereas lesions to both
structures yields a dramatic deficit in the ability to acquire new
memories and cause behavioural disturbances that mimic the
restlessness and wandering observed in AD51. In a separate line of
neurophysiological research, cholinergic Ch4 projections have been
proposed to tune the oscillatory dynamics of EC neurons during
memory encoding24,25. Confirming this hypothesis, selective lesions
to the cholinergic innervations of EC were subsequently shown to
impair working memory for novel but not familiar stimuli26.
Memory encoding thus depends on the functional integrity of both
Ch4 and EC. Damage to both of these structures, or their
connections, yields a selective memory impairment highly
consistent with the anterograde amnesia observed in prodromal
stages of AD52 (see Table 2).

One question raised by the present study is whether the
clinically silent phase of AD, during which pathophysiology is
restricted to Ch4, is indeed clinically silent. An emerging pattern

in the cognitive ageing literature indicates that some healthy,
older adults more than others exhibit unique deficits of
feature-selective attention—that is, the capacity to suppress
unattended features of sensory input—yielding a greater
susceptibility to incidental encoding of stimuli such as visual
distractors29–32. Population neural coding of sensory information
in the visual cortex is strongly linked to the basal forebrain
cholinergic system, in both human53–56 and animal27,28,57–59

research. The stimulus-driven pattern of encoding in older
adulthood may therefore constitute an early pathological sign of
AD due to loss of cortical cholinergic neurons in the basal
forebrain. Precise behavioural measures of feature-selective
attention, sensitive to early cholinergic dysfunction in older
adults, have the potential to provide clinical measures sensitive to
early stages of AD that precede memory impairment.
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Figure 5 | Mediation and conditional process analysis of Ch4-EC

predictive pathological staging. (a) Multiple linear regression analysis

confirmed that a relationship exists between smaller Ch4 volume and lower

delayed recall performance (n¼ 216). (b) Mediation analysis revealed that

Ch4 volume better predicts recall performance when accounting for

longitudinal EC degeneration, that is, the direct relationship (path c’) is

suppressed. (c) Conditional process analysis demonstrated that the

observed mediation effect was moderated by the CSF Ab biomarker of AD

neuropathology: the Ch4-EC-Recall mediation effect was significant for

the Abþ individuals (n¼ 164), that is, path c’ is suppressed, but not for

individuals with normal Ab (n¼ 52). All path coefficients were significant

two-tailed Po0.001. Error terms for the mediation (em) and criterion

variables (ey) are denoted with grey hashed arrows.
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The present study demonstrates that changes in Ch4 GM
volume predict and precede both memory impairment and
longitudinal changes in EC GM volume, and critically that these
relationships are dependent on AD neuropathology. Among
individuals expressing the Ab1–42 CSF biomarker of probable AD,
patterns of abnormal degeneration in the Ch4-EC pathway
can dissociate those with memory impairments from those
who appear cognitively normal. Specifically, a pattern of isolated
abnormal Ch4 degeneration was observed among clinically silent
probable AD individuals (HCAbþ ), with selective memory
impairment emerging only once this pattern of abnormal
degeneration affected both Ch4 and EC (MCI-NPAbþ ).
One limitation of this study is the relatively small number of
HCAbþ individuals available through ADNI, whose measures
of CSF Ab can be integrated with longitudinal structural MRI and
neuropsychological data (n¼ 28). Our findings indicate that
future large-scale research initiatives on AD would benefit from a
multimodal biomarker strategy including, at a minimum, CSF Ab
and longitudinal structural MRI, focused on cognitively healthy
adults. Nevertheless, our findings strongly suggest that a
subcortical–cortical pathological spread from Ch4 to EC defines
the earliest link in the predictive pathological staging of AD.

Although our imaging results complement recent
breakthroughs in molecular genetics showing that AD spreads
via a trans-synaptic mechanism1–4, they also necessitate
reconsideration of EC as the origin point of disease. Molecular
genetics holds promise for developing therapeutic strategies to
prevent the spread of pathology at stages of AD preceding even
the earliest memory impairments. Our evidence strongly indicates
that these efforts will be more effective if they target the basal
forebrain rather than EC.

Methods
ADNI participants and MRI acquisition. Data used in the preparation of this
article were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner, M.D. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians, to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost of
clinical trials. Subjects were recruited from 50 sites in the United States and
Canada. Written informed consent was obtained from all participants before
protocol-specific procedures were performed. All data acquired as part of this study
are publicly available. For up-to-date information, see www.adni-info.org.

In the present study, we included ADNI1 participants (N¼ 434, 187 women,
see Supplementary Table 1 and Table 3, downloaded 5 October 2012) with three
time points, separated by at least 12 months, and no more than 30 months.
Participants were divided into four groups: HCs, MCI-NP to AD and MCI patients
who did progress to AD (MCI-AD) and probable AD patients. To assess brain

change covering the transition from MCI to AD, we anchored the longitudinal
analysis to the scan in which MCI participants progressed to AD. Therefore,
MCI-AD patients always transitioned to AD at time point 2. We then defined the
study window as 12 months (minimum 6 months) before progression and
12 months (maximum 18 months) post progression. This 24-month study window
was replicated for the other three cohorts from the baseline scan and the two
subsequent annual follow-up scans (12 months and 24 months). Healthy
participants who subsequently progressed to AD or MCI were excluded (n¼ 10).
All participant neuroimage ID numbers are in Supplementary Table 1. Baseline
diagnostic status was assessed with the Mini-Mental Status Examination (Table 3),
Wechsler Memory Scale (Logical Memory subtest), Clinical Dementia Rating
Scores, in addition to subjective reports. A probable AD diagnosis was made
following NINCDS/ADRDA criteria. Information on recruitment and diagnostic
criteria can be found on the ADNI website: www.adni-info.org.

MRI data were collected according to a standardized protocol (Jack et al.60).
This protocol included a high-resolution T1-weighted, rapid gradient echo
sequence on a 1.5 T scanner. The ADNI MRI Core optimized acquisition
parameters of the neuroimage sequences for each scanner make and model. Sample
high-resolution T1-weighted, rapid gradient echo acquisition parameters for one
platform (Siemens Magnetom Sonata syngo MR 2004 A) was as follows:
T1¼ 1,000 ms, TR¼ 2,400 ms, TE¼minimum, flip angle¼ 88, bandwidth 180 Hz
per pixel, FOV¼ 240 mm, matrix size¼ 192� 192, 60 slices and slice
thickness¼ 1.2 mm. All data correction and neuroimage quality-control
procedures were performed at the Mayo Clinic. Neuroimage quality control
included inspection for protocol compliance, clinically significant medical
abnormalities and neuroimage quality. To enhance standardization across ADNI
sites, post-acquisition correction of neuroimage artefacts was also implemented.
This included corrections in geometry for gradient nonlinearity, intensity
non-uniformity due to non-uniform receiver coil sensitivity or additional causes60.
Consistent with the formulation of standardized data sets61, participant scans were
included in the current study if the MRI of one of the two T1 anatomical scans
passed the quality-control process.

MRI data preprocessing. All neuroimages were preprocessed in SPM8 using the
diffeomorphic anatomical registration through exponentiated lie algebra (DAR-
TEL)62 and longitudinal VBM8 toolboxes (http://dbm.neuro.uni-jena.de/vbm8/).
Anatomical images were segmented into the GM, white matter, cerebral spinal fluid,
bone and soft tissue. GM neuroimages were realigned within subject, then
normalized to a population template in Montreal Neurological Institute space. All
neuroimages were then subjected to non-linear modulation that plotted the absolute
amount of brain tissue, corrected for participant head size in VBM8. Neuroimages
were then sampled with a resulting voxel size 1.5 mm3. Total intracranial volume
(that is, head size) was computed as the sum of the GM, white matter and CSF
volumes derived from non-normalized segmented images.

ROI analysis. ROIs for NbM and EC were defined from probabilistic maps using
the SPM Anatomy Toolbox63, to ensure anatomical precision and replicability
(see Fig. 1 and Methods). The basal forebrain is composed of distinct magnocellular
cholinergic cell groups, defined histologically in non-human primates as Ch1–Ch6
(ref. 22), with Ch4 corresponding to NbM. A stereotaxic probabilistic anatomical
map of Ch4 was recently obtained in humans from postmortem brains64. We refer to
the NbM ROI as Ch4 henceforth, to reflect this anatomical parcellation. The EC ROI
was similarly obtained from an existing stereotaxic probabilistic anatomical map65.
We also obtained measures of GM volume from a third ROI in the PSC, which we
used as a control to confirm the anatomical specificity of predictive pathological
staging. Alzheimer’s is characterized by a relative sparing of PSC and a lack of
somatosensory symptomatology12,66. The PSC was derived from a stereotaxic

Table 3 | Demographic information from the ADNI.

Diagnostic group

HC MCI-NP MCI-AD AD

N (male, female) 150 (77, 73) 103 (69, 34) 84 (52, 32) 97 (49, 48)
Age (s.d.) 75.6 (4.9) 74.6 (6.9) 74.4 (6.8) 74.5 (7.3)
Education (s.d.) 15.9 (2.9) 16.0 (2.8) 15.7 (3.2) 14.8 (2.9)
Handed (R,L) 138, 12 96, 7 78, 6 91, 6

MMSE
T1 29.2 (0.97) 27.6 (1.71) 25.9 (2.12) 23.1 (1.92)
T2 29.2 (1.13) 27.7 (2.53) 23.2 (3.04) 20.6 (4.58)
T3 29.2 (1.02) 27.3 (3.25) 21.9 (4.61) 18.3 (6.14)

AD, probable Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HC, healthy control; MCI-AD, mild cognitive impairment (who progressed to probable AD); MCI-NP, mild cognitive
impairment (who did not progress to probable AD); MMSE, Mini-mental State Exam; T, timepoint from the longitudinal sample.
Summary of subject demographics for each diagnostic category in the ADNI sample. Age and education values are in years.
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probabilistic anatomical map of somatosensory area 3a, which lies at the fundus of
the central sulcus67.

Probability maps were calculated from postmortem histological analyses based
on a sample of ten brains. Each map describes the relative frequency at which
the same area (for example, Ch4 EC or PSC) was represented in each voxel of the
reference space. The ROIs were created by applying a threshold of 50% to the
corresponding probability map. Thus, for the ROIs, only those voxels were
considered that were present in more than five postmortem brains. The ROIs were
linearly coregistered with the modulated GM images in Montreal Neurological
Institute space. To produce indices of longitudinal degeneration, for each
participant we subtracted their unsmoothed modulated GM images at T2
(short interval) or at T3 (long interval) from their unsmoothed modulated GM
image at T1 using custom Matlab scripts. Within each ROI, values for mean GM
volume and longitudinal degeneration were extracted using the Marsbar toolbox68

and custom Matlab scripts.

Regression analysis. All multiple linear regression analyses employed robust
estimation, thereby minimizing potential outlier effects. Statistical tests of the
equality between two dependent correlations with no variables in common were
performed as follows: first, each correlation coefficient was converted into a z-score
using Fisher’s r-to-z transformation. Then, equations (2) and (11) from Steiger69

were used to compute the asymptotic covariance of the estimates. These quantities
were used in an asymptotic z-test. Statistical tests of the equality between two
dependent correlations with one variable in common were performed in the same
manner, except that equations (3) and (10) from Steiger69 were used to compute
the asymptotic covariance of the estimates.

The mediation and conditional process analyses employed a regression-based
path analytic framework for estimating direct and indirect effects47,70. The
dependent measure, Logical Memory Test delayed recall, was first averaged within
subjects across the three study time points to produce the most reliable estimate of
performance. For the mediation model, the standardized indirect effect was
determined by multiplying paths a(� 0.309) and b(� 0.436), yielding 0.135. For
both the mediation and conditional process models, inference of statistical
significance for the conditional indirect effects was determined using bias-corrected
bootstrapping procedures. Specifically, unstandardized indirect effects were
computed for each of 10,000 bootstrapped samples and the 95% CI was computed
by determining the indirect effects at the 2.5th and 97.5th percentiles.

Data availability. All data used in this study are available from the ADNI database
(adni.loni.usc.edu).
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